STATISTICS

Rijoy Kodiyan Jacob

July 29, 2020

A frequency distribution is said to be symmetric if the frequencies are distributed symmetrically or evenly on either side of an average.

In a symmetrical frequency distribution, the number of items above the mean and below the mean would be the same and the items are symmetrically arranged about the mean

Further, for symmetric distribution, Q_{3} and Q_{1} are equidistant from
median

A frequency distribution is said to be symmetric if the frequencies are distributed symmetrically or evenly on either side of an average.

In a symmetrical frequency distribution, the number of items above the mean and below the mean would be the same and the items are symmetrically arranged about the mean.

Further, for symmetric distribution, Q_{3} and Q_{1} are equidistant from
median

A frequency distribution is said to be symmetric if the frequencies are distributed symmetrically or evenly on either side of an average.

In a symmetrical frequency distribution, the number of items above the mean and below the mean would be the same and the items are symmetrically arranged about the mean.

Further, for symmetric distribution, Q_{3} and Q_{1} are equidistant from median.

SKEWNESS

Skewness means lack of symmetry. The word skewness literally denotes asymmetry.

If a frequency distribution is skewed, there will be more items on one side of the mode than the other side

In the case of a skewed distribution, the mean and the median are pulled away from the mode. That is, for a skewed distribution mean, median and mode are not equal

SKEWNESS

Skewness means lack of symmetry. The word skewness literally denotes asymmetry.

If a frequency distribution is skewed, there will be more items on one side of the mode than the other side

In the case of a skewed distribution, the mean and the median are pulled away from the mode. That is, for a skewed distribution mean, median and mode are not equal

Skewness

Skewness means lack of symmetry．The word skewness literally denotes asymmetry．

If a frequency distribution is skewed，there will be more items on one side of the mode than the other side

In the case of a skewed distribution，the mean and the median are pulled away from the mode．That is，for a skewed distribution mean，median and mode are not equal．

■ For a skewed distribution Q_{1} and Q_{3} will not be equidistant from median.

- It has a long tail on one side and a short tail on the other side.
- Most of the economic datare skewed distributions.

Example

Income, Savings, etc. have skewed distributions.

\equiv

■ For a skewed distribution Q_{1} and Q_{3} will not be equidistant from median.
■ It has a long tail on one side and a short tail on the other side.

- Most of the economic datarave skewed distributions.

Example
Income, Savings, etc. have skewed distributions.

■ For a skewed distribution Q_{1} and Q_{3} will not be equidistant from median.
■ It has a long tail on one side and a short tail on the other side.

- Most of the economic data have skewed distributions.

Example
Income, Savings, etc. have skewed distributions.

■ For a skewed distribution Q_{1} and Q_{3} will not be equidistant from median.
■ It has a long tail on one side and a short tail on the other side.
■ Most of the economic data have skewed distributions.

Example

Income, Savings, etc. have skewed distributions.

+VE AND -VE SKEWNESS

(a) Negatively skewed
\longleftarrow Negative Direction

(b) Normal (no skew)

Mean

Perfectly Symmetrical Distribution
(c) Positively skewed

Positive Direction

■ Skewness may be either positive or negative.

- Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right
- Here more than half the area falls at the right side of the highest ordinate.
- Skewness is said to be when mean is less than median and median is less the (the curve is skewed to the left)
- Here more than ha the arsa falls at the left of the highest ordinate.
- For a positively skeved longer tail at the right and for a negatively skewed curve, tail at the left.
$\equiv \quad \square 9 \curvearrowright$

■ Skewness may be either positive or negative.

- Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right.
- Here more than half the area falls at the right side of the highest ordinate.
- Skewness may be either positive or negative.
- Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right.
- Here more than half the area falls at the right side of the highest ordinate.
- Skewness is said to be negative when mean is less than median and median is less thare (the curve is skewed to the left)
- Here more than half area falls at the left of the high
ordinate.
- For a positively skeved longer tail at the right and for a negatively skewed curve, tail at the left.
- Skewness may be either positive or negative.
- Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right.
- Here more than half the area falls at the right side of the highest ordinate.
■ Skewness is said to be negative when mean is less than median and median is less than mode (the curve is skewed to the left).
- Here more than half the alrya falls at the left of the highest ordinate.
■ For a positively skevesd longer tail at the right and for a negatively skewed curve, tail at the left.

■ Skewness may be either positive or negative.

- Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right.
- Here more than half the area falls at the right side of the highest ordinate.
- Skewness is said to be negative when mean is less than median and median is less than mode (the curve is skewed to the left).
■ Here more than half the area falls at the left of the highest ordinate.
- For a positively skeved longer tail at the right and for a negatively skewed curve, tail at the left.

■ Skewness may be either positive or negative.
■ Skewness is said to be positive when mean is greater than median and median is greater than mode. In this case the curve is skewed to the right.

- Here more than half the area falls at the right side of the highest ordinate.
- Skewness is said to be negative when mean is less than median and median is less than mode (the curve is skewed to the left).
- Here more than half the area falls at the left of the highest ordinate.
- For a positively skewed longer tail at the right and for a negatively skewed curve, tail at the left.

Ist Measure of Skewness

Karl Pearson＇s Coefft．

Mean - Mode

Karl Pearson＇s Coefficient＇J＇$=\frac{\text { Mean }- \text { Mode }}{\text { Standard Deviation }}$
In case，if in a frequency distribution，the Mode is ill defined，then Mean－Mode is taken as 3（Mean－Median）
If Mode Ill Defined
＇J＇$=\frac{3(\text { Mean }- \text { Median })}{\text { StandardDeviation }}$ ；value of＇ J ＇will be $-3<\mathrm{J}>3$

2nd Measure of Skewness（Bowley＇s Coefft．）

Bowley＇s coefft．＇J＇$=\frac{\left(Q_{3}+Q_{1}-2 M\right)}{Q_{3}-Q_{1}}$
Where＇M＇is the Median．

Where＇D＇stands for der and＇P＇stands for Percentile

2nd Measure of Skewness（Bowley＇s Coefft．）
Bowley＇s coefft．＇J＇$=\frac{\left(Q_{3}+Q_{1}-2 M\right)}{Q_{3}-Q_{1}}$
Where＇M＇is the Median．
Third Measure of Skewness（Kelly＇s Coefft．）

$$
' \jmath \prime=\frac{\left(D_{9}+D_{1}-2 \text { Median }\right)}{\left(D_{9}-D_{1}\right)} \text { or } \frac{\left(P_{90}+P_{10}-2 \text { Median }\right)}{\left(P_{90}-P_{10}\right)}
$$

Where＇D＇stands for decile and＇P＇stands for Percentile．

Fourth Measure of Skewness

On the basis of central moments, Coefficient of skewness is given by ' J ' $=\frac{\mu_{3}}{\sqrt{\mu_{2}^{2}}}$

Where ' μ_{3} and μ_{2} are third moment and second moment respectively.

Central Mombnt μ_{r}
Central Moment

Fourth Measure of Skewness

On the basis of central moments, Coefficient of skewness is given by ' J ' $=\frac{\mu_{3}}{\sqrt{\mu_{2}^{2}}}$

Where ' μ_{3} and μ_{2} are third moment and second moment respectively.

Central Moment μ_{r}
Central Moment ' μ_{r} ' $=\frac{\sum(x-\bar{x})^{r}}{n}$ for individual series and $\frac{\sum f \times(x-\bar{x})^{r}}{N}$ for a frequency distribution.

Kurtosis

The term 'Kurtosis' indicates whether a distribution is flat topped or peaked.

Measure of Kurtosis is therefore measure of peakedness.
Mesokurtic
When a curve is neither peaked nor flat topped, it is called
mesokurtic(normal)

Kurtosis

The term 'Kurtosis' indicates whether a distribution is flat topped or peaked.

Measure of Kurtosis is therefore measure of peakedness.

Mesokurtic
When a curve is neither peaked nor flat topped, it is called
mesokurtic(normal)

Kurtosis

The term 'Kurtosis' indicates whether a distribution is flat topped or peaked.

Measure of Kurtosis is therefore measure of peakedness.

Mesokurtic

When a curve is neither peaked nor flat topped, it is called mesokurtic(normal).

LEPTOKURTIC
 When a frequency curve is more peaked than the normal curve it is called leptokurtic.

Platykuritc

When a frequency curve is more flat
topped than the normal curve, it is
called platykurtic.

LEPTOKURTIC

When a frequency curve is more peaked than the normal curve it is called leptokurtic.

Platykurtic
When a frequency curve is more flat topped than the normal curve, it is called platykurtic.

Measure of Kurtosis

Measure of Kurtosis is derived from moments.
Measure of Kurtosis ' β_{2} ' $=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}$

When $\beta_{2}=3$, the distribution will be mesokurtic, if it is lower than
3 , the distribution is platykurtic and if it is greater than 3, it is leptokurtic

Measure of Kurtosis

Measure of Kurtosis is derived from moments.
Measure of Kurtosis ' β_{2} ' $=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}$
When $\beta_{2}=3$, the distribution will be mesokurtic, if it is lower than 3, the distribution is platykurtic and if it is greater than 3, it is leptokurtic.

Central Moments

TABLE: The first four moments are as follows

Individual Series	Frequency Distribution
${ }^{\prime} \mu_{1}^{\prime}=\frac{\sum(x-\bar{x})^{1}}{n}$	$\mu_{1}{ }^{\prime}=\frac{\sum f \times(x-\bar{x})^{1}}{N}$
${ }^{\prime} \mu_{2}{ }^{\prime}=\frac{\sum(x-\bar{x})^{2}}{n}$	$\mu_{2}^{\prime}=\frac{\sum f \times(x-\bar{x})^{2}}{N}$
$\prime^{\prime} \mu_{3}=\frac{\sum\left(x^{n}-\bar{x}\right)^{3}}{n}$	${ }^{\prime} \mu_{3}^{\prime}=\frac{\sum f \times(x-\bar{x})^{3}}{N}$
$\prime \mu_{4}^{\prime}=\frac{\sum(x-\bar{x})^{4}}{n}$	${ }^{\prime} \mu_{4}^{\prime}=\frac{\sum f \times(x-\bar{x})^{4}}{N}$

EXAMPLE

Find the coefficient of Skewness and Measure of Kurtosis for the following frequency distribution．

Class	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$
Frequency	2	3	3	1	1

Solution

Class	x	f	fx	$x-\bar{x}$	$\mathrm{f}(x-\bar{x})$	$f(x-\bar{x})^{2}$	$f(x-\bar{x})^{3}$	$f(x-\bar{x})^{4}$
$0-2$	1	2	2	-3.2	-6.4	20.48	-65.54	209.73
$2-4$	3	3	9	-1.2	-3.6	4.32	-5.18	6.22
$4-6$	5	3	15	0.8	2.4	1.92	1.54	1.23
$6-8$	7	1	7	2.8	2.8	7.84	21.95	61.46
$8-10$	9	1	9	4.8	4.8	23.04	110.59	530.83
		10	42	4	0	57.60	63.36	809.47

$$
\begin{gathered}
{ }^{\prime} \mu_{1}^{\prime}=\frac{\sum f \times(x-\bar{x})^{1}}{N}=\frac{0}{N}=0 \\
{ }^{\prime} \mu_{2}^{\prime}=\frac{\sum f \times(x-\bar{x})^{2}}{N}=\frac{57.60}{10}=5.76 \\
{ }^{\prime} \mu_{3}^{\prime}=\frac{\sum f \times(x-\bar{x})^{3}}{N}=\frac{63.36}{10}=6.34 \\
{ }^{\prime} \mu_{4}^{\prime}=\frac{\sum f_{4} \times(x-\bar{x})^{4}}{N}=\frac{809.47}{10}=80.95
\end{gathered}
$$

Coefficient of skewness ' J ' $=\frac{\mu_{3}}{\sqrt{\left(\mu_{2}\right)^{3}}}=\frac{6.36}{\sqrt{(5.76)^{3}}}=0.46$
\therefore the distribution is positively skewed.
Measure of Kurtosis $=' \beta_{2} '^{\prime}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{80.95}{(5.76)^{2}}=2.44$
\therefore the distribution is platykurtic.

