STATISTICS

Rijoy Kodiyan Jacob

July 29, 2020

Quartile Deviation(Semi Inter Quartile Range)

Quartile Deviation is defined as half the distance between the third and first quartiles.

Quartile Deviation is am absolute measure and it is given by

$$
\text { Quartile Deviation }=\frac{Q_{3}-Q_{1}}{2}
$$

Q_{1} and Q_{3} are the first quartile and third quartile respectively.
The corresponding relative measure is the Coefficient of Quartile Deviation which is given by
Coefficient of Quartile Deviation $=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$

QD in Individual Series

$\mathrm{Q}_{1}=$ size of $\left(\frac{n+1}{4}\right)^{\text {th }}$ item, when the items are arranged in ascending order.
$\mathrm{Q}_{3}=$ size of $\left(\frac{n+1}{4} \times 3\right)^{\text {th }}$ item, when the items are arranged in ascending order.

Quartile Deviation $=\frac{Q_{3}-Q_{1}}{2}$

$$
\begin{aligned}
& \text { Coefficient of Quartile Deviation }=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}} \\
& \text { Inter Quartile Range }=Q_{3}-Q_{1}
\end{aligned}
$$

EXAMPLE

Compute Quartile measure of dispersion，Interquartile range，and Coefficient of Quartile Deviation for the following series． $23,25,8,10,9,29,45,85,10,16,24$.

SOLUTION

If values are arranged in the ascending series，
$8,9,10,10,16,23,24,25,29,45,85$ ．；$N=11$

$$
\mathrm{Q}_{1}=\text { size of }\left(\frac{11+1}{4}\right)^{\text {th }} \text { item }=\text { size of } 3^{\text {rd }} \text { item }=10
$$

$\mathrm{Q}_{3}=$ size of $\left(\frac{11+1}{4} \times 3\right)^{\text {th }}$ item $=$ size of $9^{\text {th }}$ item $=29$
Q. D.

Quartile Deviation $=\frac{Q_{3}-Q_{1}}{2}=\frac{29-10}{2}=9.5$
Interquartile Range Inter Quartile Range $=\mathrm{Q}_{3}-\mathrm{Q}_{1}=19$

Coefficient of $\mathrm{QD}=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}=\frac{29-10}{29+10}=\frac{19}{39}=0.49$

QD in Discrete Series
Quartile Deviation $=\frac{Q_{3}-Q_{1}}{2}$ ，
$\mathrm{Q}_{1}=$ size of $\left(\frac{N+1}{4}\right)^{\text {th }}$ item， $\mathrm{N}=\sum f$

$$
\mathrm{Q}_{3}=\text { size of }\left(\frac{3 N+1}{4}\right)^{t h} \text { item, } \mathrm{N}=\sum f
$$

EXAMPLE

Find the QD for the following series

Size	5	8	10	12	19	20	32
Freq.	3	10	15	20	8	7	6

Solution

Size	Freq	Cum. Freq
5	3	3
8	10	13
10	15	28
12	20	48
19	8	56
20	7	63
32	6	69
	$\sum \mathrm{~N}=69$	

$$
\begin{aligned}
& \mathrm{Q}_{1}=\text { size of }\left(\frac{N+1}{4}\right)^{\text {th }} \text { item } \\
& =17.5 \text { item size }=10 \\
& Q_{3}=\text { size of }\left(\frac{3 N+1}{4}\right)^{\text {th }} \text { item } \\
& =52.5 \text { item size }=19
\end{aligned}
$$

$$
\mathrm{QD}=\frac{Q_{3}-Q_{1}}{2}=\frac{19-10}{2}=
$$

QD in a Continuous Series

Here QD is the the same，i．e． $\mathrm{QD}=\frac{Q_{3}-Q_{1}}{2}$
$\mathrm{Q}_{1} \& \mathrm{Q}_{3}$ are size of $\left(\frac{N}{4}\right)$ th item and size of $\left(\frac{N}{4} \times 3\right)$ th item respectively．They cannot be determined directly and is determined graphically by the interpolation formula which is given by．

$$
\mathrm{Q}_{1}=I_{1}+\frac{\left(\frac{N}{4}-c f\right)}{f} \times c \quad \text { and } \quad \mathrm{Q}_{3}=I_{1}+\frac{\left(\frac{3 N}{4}-c f\right)}{f} \times c
$$

Where

' I_{1} ' is the lower limit of the quartile class.
' f ' is the frequency of the class.
'cf' is the cumulative frequency of the preceding class.
' c ' is the class interval of the quartile class.

ExAMPLE

Find the quartile deviation for the following frequency distribution.

Age	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No.	15	30	53	75	100	110	115	125

Solution

First you have to form the cumulative frequency distribution and determine Q_{1} and Q_{3}
$\mathrm{Q}_{1}=I_{1}+\frac{\left(\frac{N}{4}-c f\right)}{f} \times c \quad \mathrm{Q}_{3}=I_{1}+\frac{\left(\frac{3 N}{4}-c f\right)}{f} \times c$

Size	f	cf		$N \quad 6$
0-10	15	15		
10-20	30	45		item size $=\frac{623}{4}$ th item
20-30	53	98		55.75
30-40	75	173	$\frac{N}{4}$	Lower quartile class is 30-40
40-50	100	273		$\left(\frac{N}{4}-c f\right)$
50-60	110	383		$+4$
60-70	115	498		
70-80	125	623		$+\left(\frac{(155.75-98)}{75}\right) \times 10=37.7$
	$\sum=623$			

$\frac{3 N}{4}$ item size $=\frac{3 \times 623}{4}$ th item $=467.5$
Lower quartile class is 60－70
$\mathrm{Q}_{3}=\mathrm{I}_{1}+\frac{\left(\frac{3 N}{4}-c f\right)}{f} \times c=60+\left(\frac{(467.5-383)}{115}\right) \times 10=$
67.33

Quartile Deviation $=\frac{Q_{3}-Q_{1}}{2}=\frac{67.33-37.7}{2}=14.815$

Mean Deviation

Mean Deviation is defined as the arithmetic mean of deviations of all the values in a series from their average, counting all such deviations as positive. The average selected may be mean, median or mode.
where '|d |' represens deviation from an average without sign. being number of items.

Mean Deviation

Mean Deviation is defined as the arithmetic mean of deviations of all the values in a series from their average，counting all such deviations as positive．The average selected may be mean，median or mode．

Mean Deviation

Mean Deviation is defined as the arithmetic mean of deviations of all the values in a series from their average, counting all such deviations as positive. The average selected may be mean, median or mode.

$$
\therefore \text { Mean Deviation }=\frac{\sum|d|}{n}
$$

where ' $|d|$ ' represents deviation from an average without sign. ' n ' being number of items.

Mean deviation is an absolute measure. Its relative value is Coefficient of Mean Deviation. It is equal to the ratio of Mean deviation to Average from which Mean Deviation is computed.

Mean deviation is an absolute measure. Its relative value is Coefficient of Mean Deviation. It is equal to the ratio of Mean deviation to Average from which Mean Deviation is computed.

If Mean is the chosen average,
Coefficient of Mean Deviation $=\frac{\text { Mean Deviation }}{\text { Mean }}$

ExAMPLE

Find the mean deviation from mean and its coefficient for the following values $25,63,85,75,62,70,83,28,30,12$

SOLUTION
First you have to find out the Mean
Here the mean is obtained as

Mean
$25+63+85+75+62+70+83+28+30+12$

Example

Find the mean deviation from mean and its coefficient for the following values $25,63,85,75,62,70,83,28,30,12$

Solution

First you have to find out the Mean.
Here the mean is obtained as

$$
\text { Mean }=\frac{25+63+85+75+62+70+83+28+30+12}{10}=53.3
$$

ExAMPLE

Find the mean deviation from mean and its coefficient for the following values $25,63,85,75,62,70,83,28,30,12$

Solution

First you have to find out the Mean.
Here the mean is obtained as

$$
\text { Mean }=\frac{25+63+85+75+62+70+83+28+30+12}{10}=53.3
$$

Then find out deviations $\psi d \mid$ for each value i.e. $25-53.3=28.3$

x	$\|\mathrm{d}\|=\mathrm{x}-53.3$ without sign
25	283
63	9.7
85	31.7
75	21.7
62	8.7
70	16.7
83	29.7
28	25.3
30	23.3
12	41.3
533	236.4

Mean Deviation $=\frac{\sum|d|}{n}=\frac{236.4}{10}=23.64$
Coefficient of mean deviation $=\frac{\text { Mean Deviation }}{\text { Mean }}=\frac{23.64}{53.3}=0.44$

Mean Deviation from Median

Calculate mean deviation from median and its coefficient for the following values, $5,25,28,33,35,44,82,83,87,96,99$

Solution
Median $=$ Size of $\frac{(N+1)}{2}$ th item. $=$ Size of 6 th item $=44$
Find out the deviation of each value from median. Find the sum of
deviation

Mean Deviation from Median

Calculate mean deviation from median and its coefficient for the following values, $5,25,28,33,35,44,82,83,87,96,99$

Solution

Median $=$ Size of $\frac{(N+1)}{2}$ th item. $=$ Size of 6 th item $=44$.
Find out the deviation of each value from median. Find the sum of deviation.

x	$\|\mathrm{d}\|=\mathrm{x}-44$ without sign
5	39
25	19
28	16
33	11
35	9
44	0
82	38
83	39
87	43
96	52
99	55
	321

Mean Deviation $=\frac{321}{11}=29.18$ ．

Coefficient of Mean Deviation $=\frac{29.18}{44}=0.66$

Mean Deviation in Discrete Frequency Series
In the case of discrete frequency series，MD is given by，

$$
\mathrm{MD}=\frac{\sum f \times|d|}{N}
$$

Mean Deviation in Discrete Frequency Series

In the case of discrete frequency series, MD is given by,

$$
\mathrm{MD}=\frac{\sum f \times|d|}{N}
$$

Where ' f ' is the frequency corresponding to the given size, ' $|x|$ ' and ' N ' is the total frequency.

Example

Calculate the MD for the following series from mean.

x	f	fx	$\|\mathrm{d}\|$ $=\|\mathrm{x}-1.02\|$	$\mathrm{f}\|\mathrm{d}\|$
0	171	0	1.02	174.42
1	82	82	0.02	1.64
2	50	100	0.98	49.00
3	25	75	1.98	49.5
4	13	52	2.98	38.74
5	7	35	3.98	27.86
6	2	12	4.98	9.96
	350	356		351.12

Mean of the series $=\frac{\sum f \times x}{N}=\frac{356}{350}=1.02$
Mean Deviation $=\frac{\sum f \times \mid d}{N}=\frac{351.52}{350}=0.98$

MD in Continuous Frequency Distribution

MD in continuous frequency distribution is given by:
Mean Deviation $=\frac{\sum f \times|d|}{N}$
It is same as discrete freguency series. The only difference is that
here the mid value otheress is taken as

MD in Continuous Frequency Distribution

MD in continuous frequency distribution is given by:
Mean Deviation $=\frac{\sum f \times|d|}{N}$
It is same as discrete frequency series. The only difference is that here the mid value of the class is taken as ' x '.

Example

Calculate the MD from mean for the following frequency distribution.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	6	10	20	10	6	4

\square

Marks	f	Mid x	fx	$\|\mathrm{d}\|$ $=\|\mathrm{x}-35\|$	$\mathrm{f}\|\mathrm{d}\|$
$0-10$	4	5	20	30	120
$10-20$	6	15	90	20	120
$20-30$	10	(25)	250	10	100
$30-40$	20	35	700	0	0
$40-50$	10	45	450	10	100
$50-60$	6	55	330	20	120
$60-70$	4	65	260	30	120
	60		2100		680

Solution

Mean of the series $=\frac{\sum f \times x}{N}=\frac{2100}{60}=35$
Mean Deviation $=\frac{\sum f \times|d|}{N}=\frac{680}{60}=11.33$

Merits

- Mean deviation is a very simple and an easy measure of dispersion.
- It is easily understood.
- It is based on all the items of the series. So it is more representative
- Mean deviation is less affected by extreme values.

Merits

- Mean deviation is a very simple and an easy measure of dispersion.
■ It is easily understood.
- It is based on all the items of the series. So it is more representative
- Mean deviation is less affected by extreme values.

Merits

- Mean deviation is a very simple and an easy measure of dispersion.
- It is easily understood.

■ It is based on all the items of the series. So it is more representative.

- Mean deviation is less affected by extreme values.

Merits

- Mean deviation is a very simple and an easy measure of dispersion.
- It is easily understood.

■ It is based on all the items of the series. So it is more representative.
■ Mean deviation is less affected by extreme values.

DEMERITS

■ Mean deviation suffers from inaccuracy because '+' or '-' signs are ignored.

- Mean deviation is not capable of any further algebraic treatment.
- Mean deviation is not reliable measure when calculated from Mode as the Mode is uncertain in some cases.

DEMERITS

■ Mean deviation suffers from inaccuracy because '+' or '-' signs are ignored.
■ Mean deviation is not capable of any further algebraic treatment.
> - Mean deviation is not reliable measure when calculated from Mode as the Mode is uncertain in some cases.

DEMERITS

■ Mean deviation suffers from inaccuracy because '+' or '-' signs are ignored.

- Mean deviation is not capable of any further algebraic treatment.
- Mean deviation is not reliable measure when calculated from Mode as the Mode is uncertain in some cases.

UsES OF MD

- Mean deviation is significantly used (or measuring variability of the series relating to Economic and Social phenomena.
- Variability in the distribution of wealth and income is generally measured in terms of Mean deviation.

UsES OF MD

－Mean deviation is significantly used（or measuring variability of the series relating to Economic and Social phenomena．
－Variability in the distribution of wealth and income is generally measured in terms of Mean deviation．

