A .	A		0
	E 94	05	u
T	U	υu	U
	200 000 22	Athir Mana	11.25.55.750

(Pages: 3)

Name	 •
83	

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2018

(CUCBCSS—UG)

Chemistry

CHE 6B 11-PHYSICAL CHEMISTRY-III

Time: Three Hours

Maximum: 80 Marks

Section A

Answer in one word or sentence.

Answer all questions.

- 1. Write the equation relating equivalent conductance and concentration of a strong electrolyte.
- 2. Define electrochemical series.
- 3. What is a fuel cell?
- 4. Write the Nernst equation for electrode potential.
- 5. Why is it necessary to use a salt bridge in a Galvanic cell?
- 6. Define buffer capacity.
- 7. Why does specific conductance of a solution decreases with dilution?
- 8. What is meant by imperfection or defect in a crystal?
- 9. Which colligative property is preferred for the molar mass determination of macromolecules?
- 10. Calculate the Miller indices for crystal planes with intercepts 2a, 1b, 3c.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer any ten questions. Each question carries 2 marks.

- 11. How will you determine ionic product of water by conductance measurement?
- 12. Explain the Lewis concepts of acids and bases.
- 13. Write down the electrode reaction and cell reaction in the following cell:

Pt,H₂(g), H+(aq) // Cl_(aq), AgCl, Ag.

- 14. Write two advantages of H_2 - O_2 fuel cell over ordinary cell.
- 15. What is a standard cell? Give an example.

Turn over

- A 5% solution (by mass) of cane sugar (mol. mass 342) in water has a f.p of 271K. Calculate the f.p of 5% solution (by mass) of glucose (mol. mass 180) in water . F.p of pure water is 273.15K.
- Why is a solution of ferric chloride is acidic?
- 18. Under what condition van't Hoff factor is (i) equal to 1 and (ii) greater than one? Explain your
- Evaluate the spacing between (111) planes in a face centred cubic lattice (edge length = a).
- Specific conductance of a decimolar solution of NaCl at 25°C is 1.24 Sm⁻¹.The resistance of the cell containing solution was 65 ohm. What is the cell constant?
- What are liquid crystals? How are they class fied?
- 22. Calculate the ionic strength of a solution containing 0.2 M NaCl and 0.1 M $\rm BaCl_2$.

 $(10 \times 2 = 20 \text{ marks})$

Section C

Answer any five questions. Each question carries 6 marks.

- The specific and equivalent conductance of a saturated solution of of AgBr respectively are 2.44×10^{-5} $10^{-7}\,\mathrm{S\,cm^{-1}}$ and $140.3\,\mathrm{S\,cm^{-2}\,eq^{-1}}$. Calculate the solubility of AgBr. The conductivity of water used for solution = 1.21×10^{-7} S cm⁻¹.
- 24. State and explain Kohlrausch's law of independent migration of ions. How can it be used to find the degree of dissociation of a weak electrolyte?
- 25. Explain Potentiometric titrations by taking examples of strong acid strong base titration
- 26. Derive the Bragg equation.
- 27. Derive an equation to calculate the pH of a buffer solution.
- 28. Distinguish between ideal and non ideal solutions.
- 29. How can you determine the solubility product of a sparingly soluble salt using EMF measurement?
- $2.0\mathrm{g}$ of benzoic acid in $25\mathrm{g}$ of benzene show a freezing point depression of $1.62\mathrm{K}$. $\mathrm{K_f}$ of benzene is 4.9K kg mol⁻¹ Calculate the degree of association. $(5 \times 6 = 30 \text{ marks})$

Section D

Answer any two questions. Each question carries 10 marks.

- 31. (a) State and explain Faraday's laws of electrolysis.
 - (b) A current was passed in series through a solution of a salt of a metal X and a solution of ZnSO₄, using Pt electrodes. After a certain time 0.348g of X and 1.264g of Zn were deposited. Calculate the equivalent mass of X. Equivalent mass of Zn is 32.7.
- 32. (a) What are concentration cells? How are they classified? Give one example for each type and also write the electrode and cell reaction.
 - (b) Calculate the EMF of the cell : $Pt, Br_2(g; 0.1 \text{ atm}) / Br^-(aq; 0.5 \text{ M}) / Br_2(g; 1 \text{ atm}), Pt at 298K$
- 33. (a) Explain the terms:
 - (i) Colligative property.
 - (ii) Osmotic pressure.
 - (iii) Liquid junction potential.
 - (b) A solution containing 8.4g per dm³ urea (molar mass = 60) is isotonic with a 5% solution of an organic nonvolatile solute. Calculate the molar mass of the latter.
- 34. (a) Discuss the principle and applications of EMF measurement in acid base titration.
 - (b) Briefly explain the stoichiometric defects in Crystals.

 $(2 \times 10 = 20 \text{ marks})$