Name.....

D 92249

(Pages:3)

Reg. **No**.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(CUCBCSS-UG)

Core Course—Chemistry

CHE 3B 03-PHYSICAL CHEMISTRY - I

Time : Three Hours

Maximum : 80 Marks

Section A (One word)

Answer all questions. Each question carries 1 mark.

- 1. The temperature above which a gas cannot be liquefied by applying pressure is called -
- 2. systems can exchange both energy and matter with the surroundings.
- 3. The entropy change of the system during an adiabatic process is
- 4. For an isothermal process, the work done is at the expense of
- 5. The standard enthalpy of a pure element is taken as —
- 6. According to <u>law, thermochemical equations can be added or multiplied.</u>
- 7. The heat of neutralisation of a strong acid by a strong base is always —
- 8. At the normal B.P. of a liquid its vapour pressure will become equal to _____
- 9. The S.I. unit of surface tension is
- 10. Chemical equilibrium is <u>in nature.</u>

(10 x 1 = 10 marks)

Section B (Short answer)

Answer any **ten** questions. Each question carries 2 marks.

- 11. Calculate the r.m.s. velocity of H_2 molecule at 27°C.
- 12. Write the vander Waals' equation for 'n' moles of a gas and explain the terms.
- 13. Differentiate between extensive and intensive properties.
- 14. Calculate the work done during the isothermal reversible expansion of **10** moles of an ideal gas from 10 dm[°] to 20 dm[°] at 27°C.
- 15. The vander Waals' constants 'a' and 'b' for a gas are 1.40 x 10⁻¹ Nm⁻¹ mot⁻² and 3.9 x 10⁻⁵m³ mol⁻¹, respectively at 27°C. Calculate the inversion temperature of the gas.

Turn over

- 16. The standard enthalpy of a compound is the same as its standard heat of formation. Illustrate with an example.
- 17. The heat of formation of CO₂ and CO are 393.5 kJ and 110.3 kJ respectively. Calculate the heat of combustion of CO.
- 18. What is meant by residual entropy ? Explain with example.
- 19. Write any *four* factors that affect the viscosity of a liquid.
- 20. The viscosity of an oil of density 0.97 gcm [^] is 5 x 10⁻² Nm [^] at 27°C. Calculate the time required for a given volume of the oil to flow through a viscometer, if the same volume of water takes 50 seconds to flow through the viscometer. The coefficient of viscosity and density of water respectively are 8.9 x 10⁻¹ Nm^{-°} and 1 gcm [^].
- 21. What are heterogeneous equilibria ? Give example.
- 22. For the reaction 2 NO_(g) + Cl_{2(g)} 2NOCl_(s), the value of Kp is 2 x 10³ a.t.m. at 27°C. Calculate the value of Kc.

(10 x 2 = 20 marks)

Section C (Paragraph)

Answer any five questions. Each question carries 6 marks.

- 23. What are the features of Maxwell's distribution of molecular velocities ? Explain the effect of temperature in the distribution.
- 24. What is meant by compressibility factor of a gas? Explain its significance.
- 25. State and formulate the first law of thermodynamics, Mention the important limitations of the law. How could the second law of thermodynamics overcome these limitations ?
- 26. Derive the Clausius-Clapeyron equation for the liquid vapour equilibrium. Give any *two* applications of the law.
- 27. What is meant by thermodynamic probability? Deduce the relation between entropy and probability of a system.
- 28. What is parachor ? How is it used to elucidate the structure of compounds ? Illustrate with an example.
- 29. State and explain Le-Chatelier principle. Discuss the effect of temperature and pressure in the equilibrium $2SO_2$ (g) + O_2 (g) $2SO_3$ (g) $\Delta H = -192.5$ kJ.
- 30. Derive the equilibrium constant Kc for the reaction aA+bB = cC+dD. How is the value of Kc related to Kp?

(5 X 6 = 30 marks)

Section D (Essay)

Answer any two questions. Each question carries **10** marks.

31.	(i)	What are critical constants ? How are they related to vander Waals' constants ?	(6 marks)	
	(ii)	Explain the determination of critical volume of a gas.	(4 marks)	
32.	(i)	Describe the different strokes in the Carnot cycle and show that the efficiency of a l depends only on the temperatures of the source and the sink.		
			(6 marks)	
	(ii)	Derive the Gibb's–Duhem equation.	(4 marks)	
33.	(i)	What is Joule-Thompson coefficient ? Derive an equation for the Joule Thomson coefficien		
		a gas.		
			(6 marks)	
	(ii)	The free energy -change of a reaction at 27°C and 37°C are -85.77 kJ and -83.68 k		
		respectively. Calculate the enthalpy change of the reaction at 32°C.		
			(4 marks)	
34.	(i)	The enthalpy of formation of NH ₃ is – 46 kJ at 300 K. Calculate the enthalpy of for 325 K. The molar heat capacities at constant pressure of N ₂ , H ₂ and NH ₃ are 28. 37 JK ⁻¹ mol ⁻¹ respectively.		
			(4 marks)	

(ii) Derive an equation for the variation of equilibrium constant of a reaction with temperature. (6 marks) $[2 \ge 10 = 20 \text{ marks}]$