MODULE - III

Aims and Objectives

This Lesson deals with the concepts and applications of sequence and series. Applications of series like Arithmetic Progression and Geometric Progression and practical applications

Sequence

If for every positive integer n, there corresponds a number a_{n} such that a_{n} is related to n by some rule, then the terms $a_{1}, a_{2}, \ldots . a_{n} \ldots$ are said to form a sequence.
A sequence is denoted by bracketing its $n^{\text {th }}$ term, i.e. $\left(a_{n}\right)$ or $\left\{a_{n}\right\}$.
Example of a few sequences are:

1. If $a_{n}=n^{2}$, then sequence $\left\{a_{n}\right\}$ is $1,4,9,16 \ldots a_{n}, \ldots$
2. If $a_{n}=1 / n$, then sequence $\left\{a_{n}\right\}$ is $1,1 / 2,1 / 3,1 / 4 \ldots 1 / n \ldots$
3. If $a_{n}=n^{2} / n+1$, then sequence $\left\{a_{n}\right\}$ is $1 / 2,4 / 3,9 / 4, \ldots n^{2} / n+1, \ldots$.

The concept of sequence is very useful in finance. Some of the major areas where it plays a vital role are: 'instalment buying'; simple and compound interest problems'; 'annuities and their present values', mortgage payments and so on

Series

A series is formed by connecting the terms of a sequences with plus or minus sign. Thus if an is the nth term of a sequence, then
$a_{1}+a_{2}+\ldots+a_{n}$ is the given series of n terms.

Arithmetic Progression (AP)

A progression is a sequence whose successive terms indicate the growth or progress of some characteristics. An arithmetic progression is a sequence whose term increases or decreases by a constant number called common difference of an A.P. and is denoted by d . In other words, each term of the arithmetic progression after the fist is obtained by adding a constant d to the preceding term. The standard form of an A.P. is written as

$$
\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \mathrm{a}+3 \mathrm{~d}, \ldots
$$

where ' a ' is called the first term. Thus the corresponding standard form of an arithmetic series becomes

$$
a+(a+d)+(a+2 d)+(a+3 d)+\ldots
$$

For example

1.The sequence $1,3,5,7, \ldots \ldots$ is an A.P whose first term is 1 and $d=2$
2.The sequence $-5,-2,1,4,7, \ldots$, whose ' a ' $=-5, d=3$

Suppose we invest Rs. 100 at a simple interest of 15% per annum for 5 years. The amount at the end of each year is given by

115,130,145,160,175
This forms an arithmetic progression
The $\mathrm{n}^{\text {th }}$ Term of an A.P.
The $\mathrm{n}^{\text {th }}$ term of an A.P. is also called the general term of the standard A.P. it is given by.

$$
\mathbf{T}_{\mathbf{n}}=\mathbf{a +}(\mathbf{n} \mathbf{- 1}) \mathbf{d} ; \quad \mathrm{n}=1,2,3, \ldots
$$

Geometric Progression (GP)

A geometric progression (GP) is a sequence whose each term increases or decreases by a constant ratio called common ratio of G.P. and is denoted by r . In other words, each term of
G.P. is obtained after the first by multiplying the preceding term by a constant r . The standard from of a G.P. is written as :
a, ar, $a r^{2}, \ldots$.
Where ' a ' is called the first term. Thus the corresponding geometric series in standard form becomes
$a+a r+a r^{2}+\ldots$.
The $n^{\text {th }}$ Term of G.P.
The $\mathrm{n}^{\text {th }}$ term of G.P. is also called the general term of the standard G.P. It is given by $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}, \mathrm{n}=1,2,3, \ldots$

It may be noted here that the power of r is one less than the index of T_{n}, which denotes the rank of this term in the progression.

Practical Problems

1) Find the $12^{\text {th }}$ term of an A.P $6,2,-2$

$$
\text { Ans: } \begin{aligned}
& a_{n}=a+(n-1) d \\
& \mathrm{a}=6, \mathrm{n}=12, \mathrm{~d}=-4 \\
& =6+(12-1)-4 \\
& =6+(11)-4 \\
& =6+-44=-38 \\
& 12^{\text {th }} \text { term is }-38
\end{aligned}
$$

2) Find the $8^{\text {th }}$ term of the series $6,5 \frac{1}{2}, 5,41 / 2, \ldots$.

$$
\begin{array}{ll}
\text { Ans: } & \mathrm{a}=6, \quad \mathrm{~d}=-1 / 2, \mathrm{n}=8 \\
& a_{n}=a+(n-1) d
\end{array}
$$

$$
\begin{aligned}
& =6+(8-1)-1 / 2 \\
& =6+(7)-1 / 2 \\
& =6+-3.5=2.5
\end{aligned}
$$

3) Which term of the A.P $21,18,15, \ldots \ldots-81$?

$$
\text { Ans: } \begin{aligned}
& \mathrm{a}=21, \quad \mathrm{~d}=-3, \quad \mathrm{a}_{\mathrm{n}}=-81 \quad \mathrm{n}=? \\
& a_{n}=a+(n-1) d \\
&-81=21+(\mathrm{n}-1)-3 \\
&-81=21+-3 \mathrm{n}+3 \\
&-81=24-3 \mathrm{n} \\
&-81-24=-3 \mathrm{n} \\
& 3 \mathrm{n}=105 \\
& \mathrm{n}=105 / 3=35
\end{aligned}
$$

Therefore the $35^{\text {th }}$ term of the given A.P $=-81$
4) Which term of the A.P $21,18,15$, $0 ?$

$$
\text { Ans: } \begin{array}{lll}
\mathrm{a}=21, \quad \mathrm{~d}=-3, \quad \mathrm{a}_{\mathrm{n}}=0, \quad \mathrm{n}=? \\
& a_{n}=a+(n-1) d \\
0 & =21+(\mathrm{n}-1)-3 & \\
0 & =21+-3 \mathrm{n}+3 \\
0 & =24-3 \mathrm{n} \\
3 \mathrm{n} & =24, \quad \mathrm{n}=8 &
\end{array}
$$

Therefore, the $8^{\text {th }}$ term $=0$
5) If the $9^{\text {th }}$ term of an A.P is 99 and $99^{\text {th }}$ term is 9 . Fine $108^{\text {th }}$ term?

$$
\text { Ans: } \begin{align*}
& a_{n}=a+(n-1) d \\
& \mathrm{n}=9, \quad \mathrm{a}_{\mathrm{n}}=99 \\
& =\mathrm{a}+(9-1) \mathrm{d}=99 \\
& =\mathrm{a}+8 \mathrm{~d}=99 \ldots-\cdots \cdots \\
& \mathrm{n}=99, \quad \mathrm{a}_{\mathrm{n}}=9 \tag{1}\\
& =\mathrm{a}+(99-1) \mathrm{d}=9 \\
& =\mathrm{a}+98 \mathrm{~d}=9 \ldots-\cdots \cdots
\end{align*}
$$

Solve the equations

Then (1) - (2) -90d $=90$
$\mathrm{d}=90 /-90=-1$
Substitute the value of ' d '

$$
a+8 d=99
$$

$$
a+8 \times-1=99
$$

$$
a+-8=99
$$

$$
a=99+8=107
$$

$108^{\text {th }}$ term $=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$

$$
\begin{aligned}
& =107+(108-1)-1 \\
& =107+(107)-1 \\
& =107-107=0
\end{aligned}
$$

$$
108^{\text {th }} \text { term }=0
$$

.6) Determine the A.P whose $3^{\text {rd }}$ term is 5 and the $6^{\text {th }}$ term is 8
Ans:
$a+2 d=5$
(1)
$a+5 d=8 \cdots \cdots-\cdots-\cdots-\cdots-\cdots(2)$

Then (1) - 2) $=\quad-3 \mathrm{~d}=-3$

$$
d=\frac{3}{3}=1
$$

$$
\text { A.P }=3,4,5,6,7,8
$$

7) Find many two digit numbers are divisible by 3 ?

$$
\text { Ans: } \begin{aligned}
& \text { Numbers }=12,15,18, \cdots-\cdots 9 \\
& a=12, \quad a_{n}=99 \\
& a_{n}=a+(n-1) d \\
& 99=12+(\mathrm{n}-1) 3 \\
& 99=12+3 \mathrm{n}-3 \\
& 99=12-3+3 \mathrm{n} \\
& 99=9+3 \mathrm{n} \\
& 3 \mathrm{n}=99-9, \quad 3 \mathrm{n}=90 \\
& \mathrm{n}=\frac{90}{3}=30
\end{aligned}
$$

\therefore Two digit numbers are divisible by $3=30$ number

$$
\begin{align*}
& a+8 d=99 \tag{1}\\
& a+98 d=9
\end{align*}
$$

8) Determine the $25^{\text {th }}$ term of the A.P, whose $9^{\text {th }}$ term is -6 and the common difference is $5 / 4$.

$$
\text { Ans: } \begin{aligned}
& \mathrm{d}=5 / 4, \quad a_{9}=-6 \\
& a_{9}=a+(n-1) d \\
&-6=a+8 \times \frac{5}{4} \\
&-6=a+10 \\
& a=-10-6=-16 \\
& a_{25}=a+(\mathrm{n}-1) \mathrm{d} \\
&=-16+(25-1) \frac{5}{4} \\
&=-16+24 \times \frac{5}{4} \\
&=-16+30=14 \\
& 25^{\text {th }} \text { term }=14
\end{aligned}
$$

Sum of n terms of an A.P

Let S_{n} denotes the sum of ' n ' terms of an A.P, whose first term is ' a ' and common difference is ' d '.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\boldsymbol{n} / \mathbf{2}[\mathbf{2 a}+(\boldsymbol{n}-\mathbf{1}) d] \\
& 2 a=a+a \text { or } 2 \times a
\end{aligned}
$$

Practical Problems

(1) Find the sum of the first 20 terms of $1+4+7+10 \ldots \ldots$.

$$
\text { Ans: } \quad \begin{aligned}
& \quad \mathrm{S}_{\mathrm{n}}=n / 2[2 a+(n-1) d] \\
& \\
& \mathrm{n}=20, \quad a=1, \quad \mathrm{~d}=3 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{20}{2}(2 \times 1+(20-1) 3 \\
& \\
& =10(2+19 \times 3) \\
& \\
& =10(2+57), \quad 10 \times 59=590
\end{aligned}
$$

Sum of the first 20 terms $=590$
2) Find the sum of the series $5,3,1,-1$, -23

$$
\begin{array}{llll}
\text { Ans: } & a=5, \quad \mathrm{~d}=-2, & \mathrm{n}=?, & a_{\mathrm{n}}=-23 \\
& \mathrm{~S}_{\mathrm{n}}=n / 2[2 a+(n-1) d] &
\end{array}
$$

$$
\text { We know, } a_{n}=a+(n-1) d
$$

$$
\begin{aligned}
-23 & =5+(n-1)-2 \\
-23 & =5+-2 n+2 \\
-23 & =5+2-2 n \\
-23 & =7-2 n \\
2 n & =-23-7 \\
2 n & =30, \quad n=\frac{30}{2}=15 \\
\mathrm{~S}_{\mathrm{n}} & =\frac{15}{2}(2 \times 5+(15-1)-2) \\
& =\frac{15}{2}(10+14 \times-2) \\
& =\frac{15}{2}(10+-28) \\
& =\frac{15}{2} \times-18=15 \times-9=-135
\end{aligned}
$$

Sum of the series $=-135$
3) How many terms of the sequence $54,51,48$, \qquad be taken so that their sum is 513 . Explain the double answer.

$$
\text { Ans: } \begin{array}{ll}
& \mathrm{S}_{\mathrm{n}}=513, \quad a=54, \quad \mathrm{~d}=-3 \\
& \mathrm{~S}_{\mathrm{n}}=n / 2[2 a+(n-1) d] \\
& 513=\frac{n}{2}(2 \times 54+(\mathrm{n}-1)-3) \\
& 513=\frac{n}{2}(108-3 \mathrm{n}+3) \\
& 513=\frac{n}{2}(111-3 \mathrm{n}) \\
=1026=\mathrm{n}(111-3 \mathrm{n}) \\
=1026=111 \mathrm{n}-3 \mathrm{n}^{2} \\
=3 \mathrm{n}^{2}-111 \mathrm{n}=-1026 \\
=3 \mathrm{n}^{2}-111 \mathrm{n}+1026=0
\end{array}
$$

$$
=n^{2}-37 n+342=0
$$

Solve by using quadratic formula

$$
\text { i.e., } \quad \begin{aligned}
\mathrm{n} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a & =1, \quad \mathrm{~b}=-37, \quad \mathrm{c}=342 \\
\mathrm{n} & =\frac{37 \pm \sqrt{37^{2}-4 \times 1 \times 342}}{2 \times 1} \\
& =\frac{37 \pm \sqrt{1369-1368}}{2} \\
& =\frac{37 \pm \sqrt{1}}{2}=\frac{37 \pm 1}{2} \\
& =\frac{37+1}{2} \text { or } \frac{37-1}{2} \\
& =19 \text { or } 18 \\
& \xlongequal{\mathrm{~N}=18 \text { or } 19}
\end{aligned}
$$

4) Find the sum of all natural numbers between 500 and 1000 which are divisible by 13 .

Ans: Number between 500 and 1000 which are divisible by 13

$$
\begin{aligned}
& 507,520,533, \ldots .988 \\
& a=507, \quad \mathrm{~d}=13, \quad a_{\mathrm{n}}=988 \\
& a_{n}=a+(n-1) d \\
& 988=507+(\mathrm{n}-1) 13 \\
& 988=507+13 \mathrm{n}-13 \\
& 988=507-13+13 \mathrm{n} \\
& 988=494+13 \mathrm{n} \\
& 13 \mathrm{n}=988-494=494 \\
& 13 \mathrm{n}=494 \\
& \mathrm{n}=\frac{494}{132}=38 \\
& \mathrm{~S}_{\mathrm{n}}=n / 2[2 a+(n-1) d] \\
& =19(1014+37 \times 13) \\
& =19(1014+481) \\
& =19 \quad 1495=28405
\end{aligned}
$$

5) Find the sum of all natural numbers from 1 to 200 excluding those divisible by 5

Ans: Natural number from 1 to $200=1,2,3,4, \ldots \ldots . .200$
Divisible by $5=5,10,15,20 \ldots .200$
\therefore Natural numbers from 1 to 200 , excluding divisible by $5=$ $(1,2,3,4 \ldots .200)-(5,10,15 \ldots .200)$

Sum of $(1,2,3,4, \ldots .200)=$
$\mathrm{S}_{\mathrm{n}}=n / 2[2 a+(n-1) d]$
$=\frac{200}{2}[2 \times 1+(200-1) 1]$
$=100(2+199)$
$=100 \times 201=20,100$
Sum of (5, 10, 15, 20, 200)

$$
\begin{aligned}
& =\frac{40}{2}(2 \times 5+(40-1) 5) \\
& =20(10+39 \times 5) \\
& =20(10+195) \\
& =20 \times 205=4100
\end{aligned}
$$

Sum by natural numbers from 1 to 200 excluding divisible by $5=20100-4100$
$=\underline{\underline{16000}}$
6) The sum of the first 3 terms of an A.P is 30 and the sum of first 7 terms is 140 . Find the sum of the first 10 terms.

$$
\text { Ans: } \begin{array}{ll}
& S_{3}=30, \quad S_{7}=30, \\
& S_{n}=n / 2[2 a+(n-1) d] \\
& =\frac{3}{2}[2 \mathrm{a}+(3-1) \mathrm{d}]=30 \\
& =2 \mathrm{a}+2 \mathrm{~d}=30 \times \frac{2}{3} \\
& =2 \mathrm{a}+2 \mathrm{~d}=20 \\
& =\mathrm{a}+\mathrm{d}=10 \ldots-\ldots--\cdots--(1) \tag{1}
\end{array}
$$

$$
\begin{align*}
& =\frac{7}{2}[2 a+6 d]=140 \\
& =2 a+6 d=140 \times \frac{2}{7},=2 a+6 d=40 \\
& a+3 d=20 \tag{2}
\end{align*}
$$

Solving the equation (1) and (2) $d=5$
Then $\mathrm{a}=5$

$$
S_{10}=\frac{10}{2}[2 \times 5+9 \times 5]=\underline{\underline{275}}
$$

7) Find three numbers in A. P whose sum is 9 and the product is -165 .

Ans: Let the numbers be $a-d, a, a+d$

$$
\begin{aligned}
& (a-d)+a+(a+d)=9 \\
& 3 \mathrm{a}=9, \quad \mathrm{a}=3 \\
& (a-\mathrm{d}) \times a \times(a+d)=-165 \\
& =(3-\mathrm{d}) \times 3 \times(3+\mathrm{d})=-165 \\
& =9-\mathrm{d}^{2}=\frac{-165}{3} \\
& =9-\mathrm{d}^{2}=-55 \\
& =-\mathrm{d}^{2}=-55-9=-64 \\
& =\mathrm{d}^{2}=64, \quad \mathrm{~d}=8 \\
& a=3, \quad \mathrm{~d}=8 \\
& \text { Numbers }=(\mathrm{a}-\mathrm{d}), \mathrm{a},(\mathrm{a}+\mathrm{d}) \\
& =\underline{\underline{-5,3,11}}
\end{aligned}
$$

8) Find four numbers of A.P whose sum is 20 and the sum of whose square is 120

$$
\begin{aligned}
& \text { Ans: } \\
& \text { Let numbers be }(a-3 d),(a-d)(a+d)(a+3 d) \\
& \text { Given }(a-3 d)+(a-d)+(a+d)+(a+3 d)=20 \\
& 4 a=20, \quad a=\frac{20}{4}=5 \\
& (a-3 d)^{2} \times(a-d)^{2} \times(a+d)^{2} \times(a+3 d)^{2}=120 \\
& =(5-3 d)^{2} \times(5-d)^{2} \times(5+d)^{2} \times(5+3 d)^{2}=120 \\
& \\
& \text { We know }(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =25-30 d+9 d^{2}+25-10 d+d^{2}+25+10 d+d^{2}+25+30 d+9 d^{2}=120 \\
& =100+20 d^{2}=120 \\
& 20 d^{2}=120=100 \\
& 20 d^{2}=20, \quad d^{2}=20 / 20=1, \quad d=1 \\
& a=5, \\
& \text { Numbers are }=(a-3 d),(a-d),(a+d),(a+3 d) \\
& =(5-3) \cdot(5-1),(5+1),(5+3) \\
& =2,4,6,8
\end{aligned}
$$

9) A manufacturing of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the production uniformly increases by a fixed number every year. Find
(1) One production in the first year
(2) The production in the $10^{\text {th }}$ year.
(3) The total production in 7 year.

Ans: Since the production increases uniformly by a fixed number in every year, it form an A.P.

$$
\begin{align*}
& \text { Let } \mathrm{a}_{3}=600, \quad \mathrm{a}_{7}=700 \\
& a_{n}=a+(n-1) d \\
& 600=a+(3-1) d \\
& 600=\mathrm{a}+2 \mathrm{~d} \tag{1}\\
& 700=a+6 d \\
& a+2 d=600 \tag{1}\\
& a+6 d=700 \tag{2}\\
& \mathrm{~d}=\frac{100}{4}=25
\end{align*}
$$

(1) Production in the first year
$a+2 d=600$
$a+50=600$
$a=550$
(2) Production in the $10^{\text {th }}$ year

$$
\begin{aligned}
& \text { i.e., } a_{n}=a+(n-1) d \\
& =550+(10-1) 25 \\
& =550+9 \times 25 \\
& =550+225=775
\end{aligned}
$$

(3) Total production in $7^{\text {th }}$ year

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=n / 2[2 a+(n-1) d] \\
& =\frac{7}{2}[2 \times 550+(7-1) 25] \\
& =\frac{7}{2}(1100+6 \times 25) \\
& =\frac{7}{2}(1100+150) \\
& =\frac{7}{2}(1250) \\
& =7 \times 625=\underline{\underline{4375} \text { units }}
\end{aligned}
$$

10) The rate of monthly salary of a person is increased annually in A.P. It is known that he was drawing as 400 a month during the $11^{\text {th }}$ year of his service and as 760 during the $29^{\text {th }}$ year. Find
(1) Starting salary
(2) Annual increment
(3) Salary after 36 years.

Ans:

$$
\begin{aligned}
& a_{11}=400 \\
& a_{29}=760 \\
& a+10 d=400 \\
& \frac{a+28 d=760}{-18 d=-360} \\
& d=\frac{360}{18}=20 \\
& a+10 d=400 \\
& a+10 \times 20=400 \\
& a+200=400 \\
& a=400-200=200 \\
& a_{36}=200+35 d \\
& 200+35 \times 20 \\
& 200+700=900
\end{aligned}
$$

1) Starting salary $=200$
2) Annual Increment $=20$
3) Salary after 36 years $=900$

Arithmetic Mean (A.M)

Given two numbers a and b, we can insert a number A between them, so that a, A, b is an A.P. Such a number A is called the Arithmetic Mean of the number a and b.

We can insert as many numbers as we like between them. Let $A, A_{2}, A_{3} \ldots A_{n}$ be ' n ' numbers between a and b ,

Then

$$
\begin{aligned}
& \mathrm{A}_{1}=\mathrm{a}+\mathrm{d} \\
& \mathrm{~A}_{2}=\mathrm{a}+2 \mathrm{~d} \\
& \mathrm{~A}_{3}=\mathrm{a}+3 \mathrm{~d} \\
& \mathrm{~A}_{\mathrm{n}}=\mathrm{a}+\mathrm{nd}
\end{aligned}
$$

Example

1) Find A.M between 2 and b

Ans: A.M between 2 and $6=\frac{2+6}{2}=4$
Then A.P. $=\underline{\underline{2,4,6}}$
2) Insert 4 Arithmetic means between 5 and 20

$$
\begin{aligned}
& \mathrm{a}=5, \quad \mathrm{n}=6, \quad \mathrm{a}_{\mathrm{n}}=20, \quad \mathrm{~d}=? \\
& a_{n}=a+(n-1) d \\
& 20=5+(6-1) \mathrm{d} \\
& 20=5+5 \mathrm{~d} \\
& 20=5+5 \mathrm{~d} \\
& 5 \mathrm{~d}=20-5=15 \\
& \mathrm{~d}=15 / 5=3 \\
& \quad \mathrm{~A}_{1}=\mathrm{a}+\mathrm{d} \text { i.e., } 5+3=8 \\
& \quad \mathrm{~A}_{2}=\mathrm{a}+2 \text { d i.e., } 5+6=11 \\
& \quad \mathrm{~A}_{3}=\mathrm{a}+3 \text { d i.e., } 5+9=14 \\
& \mathrm{~A}_{4}=\mathrm{a}+4 \text { di.e., } 5+12=17
\end{aligned}
$$

Arithmetic means are 8,11,14,17
A.P. $=\underline{\underline{5,8,11,14,17,20}}$
3) Insert six numbers between 3 and 24 such that the resulting sequence is an A.P.

$$
\text { Ans: } \begin{aligned}
& \mathrm{a}=3, \quad \mathrm{n}=8, \quad \mathrm{a}_{\mathrm{n}}=24, \quad \mathrm{~d}=? \\
& a_{n}=a+(n-1) d \\
& 24=3+7 \mathrm{~d} \\
& 7 \mathrm{~d}=21, \quad \mathrm{~d}=3 \\
& \mathrm{~A}_{1}=3+3=6 \\
& \mathrm{~A}_{2}=3+6=9 \\
& \mathrm{~A}_{3}=3+9=12 \\
& \mathrm{~A}_{4}=3+12=15 \\
& \mathrm{~A}_{5}=3+15=18 \\
& \mathrm{~A}_{6}=3+18=21 \\
& \text { A.M. }=\underline{\underline{6,9,12,15,18,21}} \\
& \text { A.P. }=3,6,9,12,15,18,21,24
\end{aligned}
$$

Geometric Progression

A series is said to be in G.P if every term of it is obtained by multiplying the previous term by a constant number. This constant number is called common ratio, denoted by ' r '. $\mathrm{r}=$ $\frac{\text { second term }}{\text { first term }}$ or third term by second term etc.

The first term of a G.P is usually denoted by a. The general form of a G.P is usually denoted by a. The general form of a G.P is a, $\mathrm{ar}^{2} \mathrm{ar}^{2}, \mathrm{ar}^{3}$..... If the number of terms of a G.P is finite, it is called a finite G.P, otherwise it is called an infinite G.P. For example.
(i) $1,1 / 2,1 / 4,1 / 8 \ldots \ldots$. is a G.P, whose first term is 1 and $r=1 / 2$
(ii) $3,-6,12,-24 \ldots \ldots \ldots \ldots$. is a G.P whose $a=3, r=-2$

General term of a G.P or $\mathbf{n}^{\text {th }}$ term of a G.P

Let ' a ' be the first term and ' r ' be the common ratio of a G.P, then

$$
a_{n}=a r^{n-1}
$$

1) Find $10^{\text {th }}$ term of series $9,6,4$

$$
\text { Ans: } \quad \begin{array}{ll}
\mathrm{a}=9, \quad \mathrm{r}=\frac{6}{9}=\frac{2}{3}, \quad \mathrm{n}=10 \\
& a_{n}=a r^{n-1}=9 \times(2 / 3)^{10-1} \\
& =9 \times(2 / 3)^{9}=9(2 / 3)^{9}
\end{array}
$$

2) Find the $12^{\text {th }}$ term of $2,6,18,54$

$$
\begin{aligned}
& \mathrm{a}=2, \quad \mathrm{r}=6 / 2=3, \quad \mathrm{n}=12 \\
& a_{n}=a r^{n-1}=2 \times 3^{12-1} \\
& =2 \times 3^{11}=2 \times 177147=3,54,294
\end{aligned}
$$

3) Which term of the G.P $2,8,32$ \qquad Up to n terms is 131072 ?

$$
\begin{aligned}
& \mathrm{a}=2, \quad \mathrm{r}=4, \quad \mathrm{a}_{\mathrm{n}}=1,31,072 \\
& a_{n}=a r^{n-1} \\
& 1,31,072=2 \times 4^{n-1} \\
& 4^{n-1}=\frac{1,31,072}{2}=65536 \\
& 4^{n-1}=65536 \\
& \text { i.e., } 4^{8}=65536 \\
& \text { i.e. } \mathrm{n}-1=8 \\
& \therefore \mathrm{n}=8+1=9
\end{aligned}
$$

Hence $1,31,072$ is the $9^{\text {th }}$ term of the G.P.
4) In a G.P the third term is 24 and $6^{\text {th }}$ term is 192 . Find the $10^{\text {th }}$ term .

Ans:

$$
\begin{align*}
& \mathrm{a}_{3}=24, \quad \mathrm{a}_{6}=192 \\
& a_{n}=a r^{n-1} \\
& \mathrm{a}_{3}=\mathrm{ar}^{2}=24 \\
& \mathrm{a}_{6}=\mathrm{ar}^{5}=192 \\
& \text { i.e., } \quad \mathrm{ar}^{2}=24 \tag{1}\\
& \quad \mathrm{ar}^{2}=192 \tag{2}
\end{align*}
$$

Divide (2) by (1),

$$
\begin{aligned}
& \frac{\mathrm{ar}^{5}}{\mathrm{ar}^{2}}=\frac{192}{24} \\
& \mathrm{r}^{3}=8 \text { i.e., } 2^{3} \\
& \mathrm{r}=2
\end{aligned}
$$

Substituting $r=2$ in (1)

$$
\begin{array}{ll}
\mathrm{ar}^{2}=24, & \mathrm{a} \times 2^{2}=24 \\
\mathrm{a} \times 4=24, & \mathrm{a}=24 / 4=6 \\
\mathrm{a}_{10}=a r^{n-1} & =6(2)^{9}=3072
\end{array}
$$

Sum of ' n ' terms of a G.P

Let ' a ' be the first term and ' r ' be the common ratio and S_{n} the sum of the ' n ' terms of G.P.

$$
\text { Then } \quad \mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{(1-r)} \quad \text { or } \quad \frac{a\left(r^{n}-1\right)}{(r-1)}
$$

When r is less than 1 , we can apply first formula.

1) Find the sum of the series.

$$
\begin{aligned}
& 1024+512+256 \ldots \ldots . . \text { to } 15 \text { terms } \\
& \text { Asn: } \mathrm{a}=1024, \quad \mathrm{n}=15, \quad \mathrm{r}=1 / 2 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& =\frac{1024\left(1-1 / 2^{15}\right)}{(1-1 / 2)} \\
& =\frac{1024 \times(1 / 2)^{15}}{(1-1 / 2)} \\
& =1024 \frac{2}{1} \times\left(\frac{1}{2}\right)^{15} \\
& =2048 \times\left(\frac{1}{2}\right)^{15} \\
& \hline \hline
\end{aligned}
$$

2) Find the sum of $1+3+9+27$ \qquad to 10 terms.

$$
\begin{aligned}
& \mathrm{a}=1, \quad \mathrm{r}=3, \quad \mathrm{n}=10 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{a\left(r^{n}-1\right)}{(r-1)} \\
& =\frac{1\left(3^{10}-1\right)}{(3-1)}=\frac{59049-1}{2}=29524
\end{aligned}
$$

3) How many terms of the G.P $3,3 / 2,3 / 4, \ldots \ldots \ldots$. . are needed to give the sum $\frac{3069}{512}$

$$
\text { Ans: } \begin{array}{ll}
\mathrm{a}=3, \quad \mathrm{r}=1 / 2, \quad \mathrm{~S}_{\mathrm{n}}=\frac{3069}{512} \\
\mathrm{~S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& \frac{3069}{512}=\frac{3\left(1-(1 / 2)^{n}\right)}{(1-1 / 2)}
\end{array}
$$

$$
\begin{aligned}
& =\frac{3069}{512}=\frac{3\left(1-(1 / 2)^{n}\right)}{1 / 2} \\
& =\frac{3069}{512}=3 \times \frac{2}{1}\left(1-\left(\frac{1}{2}\right)^{n}\right. \\
& =\frac{3069}{512}=6\left(1-\left(\frac{1}{2}\right)^{n}\right. \\
& =\frac{3069}{512 \times 6}=\left(1-\left(\frac{1}{2}\right)^{n}=\frac{3069}{3072}=1-\frac{1}{2^{n}}\right. \\
& =\frac{1}{2^{n}}=1-\frac{3069}{3072}=\frac{3}{3072}=\frac{1}{1024} \\
& 2^{n}=1024 \\
& 2^{10}=1024, \quad n=10
\end{aligned}
$$

4) Find three numbers in G.P whose sum is 14 and product is 64

Ans: \quad Let the numbers $=a / r, a$, ar

$$
\begin{aligned}
& \therefore \frac{a}{r}+\mathrm{a}+\mathrm{ar}=14 \\
& \frac{a}{r} \times \mathrm{a} \times \mathrm{ar}=64 \\
& \therefore \mathrm{a}^{3}=64 \\
& 4^{3}=64 \\
& a=4
\end{aligned}
$$

Substituting value of a

$$
\begin{aligned}
& \frac{a}{4}+a+a r=14 \\
& \frac{4}{r}+4+4 r=14
\end{aligned}
$$

Multiply by ' r '

$$
\begin{aligned}
& \text { Then }=4+4 \mathrm{r}+4 r^{2}=14 \mathrm{r} \\
& 4 r^{2}-10 \mathrm{r}+4=0
\end{aligned}
$$

Use quadratic formula, for getting the value of ' r '

$$
r=2 \operatorname{cor}^{1 / 2}
$$

$$
\text { numbers }=\frac{a}{r}, a, a \mathrm{r}
$$

$$
\begin{aligned}
r=2 & =\frac{4}{2}, 4,4 \times 2, r=1 / 2=\underline{8,4,2} \\
& =\underline{2,4,8}
\end{aligned}
$$

Both are the same $=2,4,8$
5) A Person has 2 parents, 4 grand parents, 8 great grant parents and so on. Find the number of his ancestors during the ten generations preceding his won.

$$
\begin{aligned}
a & =2, \quad \mathrm{r}=2, \quad \mathrm{n}=10 \\
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
S_{10} & =\frac{2\left(2^{10}-1\right)}{2-1} \\
& =\frac{2\left(2^{10}-1\right)}{1} \\
& =2\left(2^{10}-1\right)=2046
\end{aligned}
$$

Number of ancestors preceding the person is $\underline{2046}$.

Geometric Mean

One geometric mean of two positive numbers a and b is the number $\sqrt{a b}$. Therefore, the geometric mean of 2 and 8 is 4 . We can insert as many numbers as we like between a and b to make the sequence in a G.P. Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$, \qquad . G_{n} be ' n ' number between a and b , then
$\mathrm{G}_{1}=a \mathrm{r}, \quad \mathrm{G}_{2}=a \mathrm{r}^{2}, \quad \mathrm{G}_{3}=a \mathrm{r}^{3}, \quad \mathrm{G}_{\mathrm{n}}=a \mathrm{r}^{\mathrm{n}}$

1) Insert three G.M. between 1 and 256

$$
\begin{aligned}
& \text { Ans. } \quad a=1, \quad a_{\mathrm{n}}=256, \quad \mathrm{n}=5, \quad \mathrm{r}=\text { ? } \\
& a_{\mathrm{n}}=a r^{n-1} \\
& 256=1 r^{n-1} \\
& 256=r^{n-1} \\
& 256=r^{5-1} \\
& 256=r^{4} \\
& 256=4^{4}, \quad r=4
\end{aligned}
$$

G.M. are $\mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}$

$$
\begin{aligned}
& 1 \times 4,1 \times 4^{2}, 1 \times 4^{3}=\underline{4,16,64} \\
& \mathrm{G} . \mathrm{P}=1,4,16,64,256
\end{aligned}
$$

2) Find the G.M between 4 is 16

Ans: \quad G.M $=\sqrt{4 \times 16}=\sqrt{64}=8$
3) Insert 5 geometric means between 2 and 1458

```
Ans: \(\mathrm{a}=2, \quad \mathrm{n}=7, \quad \mathrm{a}_{\mathrm{n}}=1458\)
    \(a_{\mathrm{n}}=a r^{n-1}\)
    \(1458=2 r^{7-1}\)
    \(1458=2 \mathrm{r}^{6}\)
    \(2 \mathrm{r}^{6}=1458\)
    \(r^{6}=\frac{1458}{2}, r^{6}=729\)
    \(r^{6}=3^{6}\)
    \(\therefore \mathrm{r}=3\)
G.M. \(\quad=\mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \mathrm{ar}^{4}, \mathrm{ar}^{5}\)
    \(=2 \times 3,2 \times 3^{2}, 2 \times 3^{3}, 2 \times 3^{4}, 2 \times 3^{5}\)
    \(=6,18,54,162,486,486\)
G.P. \(=2,6,18,54,162,486,1458\)
```

4) If the A.M. between two positive numbers is 34 and their G.M. is 16 . Find the numbers?

Ans: Let the numbers a and b
A.M. $=\frac{a+b}{2}=34$
G.M $=\sqrt{a b}=16$
$\therefore a+\mathrm{b}=68$
$a \times \mathrm{b}=256$
$\mathrm{b}=68-a$
$a b=256$
$a(68-a)=256$
$a^{2}-68 a=256$
$a^{2}-68 a-256=0$
Using quadratic formula
$a=4$ or 64

When $a=4, \mathrm{~b}=64$

When $a=64, \mathrm{~b}=4$
Required numbers are 64 and 4
5) Find the three numbers in G.P whose sum is 26 and product is 216 .

Ans: Let the number is G.P be

$$
\begin{aligned}
& a / r, a, a r \\
& a / r, a / a r=216 \\
& \text { i.e. } a^{3}=216, \\
& \therefore a=6 \\
& a / r+a+a r=6 / r+6+6 r=26 \\
& =6 / r+6 r=26-6 \\
& =6 / r+6 r=20
\end{aligned}
$$

Multiply by r

$$
\begin{aligned}
& =6+6^{2}=20 r \\
& =6^{2}-20 r+6 \\
& =6^{2}-20 r+6=0
\end{aligned}
$$

Solving by using quadratic formula

$$
\text { Then } r=1 / 3 \text { or } 3
$$

Required numbers a / r, a, ar

$$
r=3
$$

$$
6 / 3,6,6 \times 3=2,6,18
$$

Practical Problems

(1) Find the sum of the first 20 terms of $1+4+7+10 \ldots \ldots$
(2) Find four numbers in A.P whose sum is 20 and the sum of squares are 120
(3)Find the $9^{\text {th }}$ term of the series $1,4,7 \ldots \ldots \ldots \ldots .$.
(4) Find the $n^{\text {th }}$ term of the series $2,4,6,8$
(5) if the third term of an AP is 3 and the $7^{\text {th }}$ term is 39 . Find the common Difference
(6)Which term of the series is $17+23+29+$ \qquad is 551 .
(7) $7^{\text {th }}$ term and $12^{\text {th }}$ term of an A.P is 10 and 20 . Find the first term.
(8) find the G.M between 4 and 16.
(9)The sum of first two terms of a GP is 2 and the sum of 4 GP is 20.Determine the GP
(10)Find five numbers in GP such that their product is 32 and the product of last two is 108 .
(11). Find the 10th trm if $9,6,4$.

Mathematics of finance

Aims and Objectives

So far we have discussed about various mathematical functions and theories. This Lesson deals with the applications of such theories in Finance. In financial management, lot of calculations are involved in the case of interest, depreciation values, and so on.

1. Some terms used in business calculations

Principal amount (\mathbf{P}). This is the amount of money that is initially being considered. It might be an amount about to be invested or loaned or it may refer to the initial value or cost of plant or machinery. Thus if a company was considering a bank loan value or cost of plant or machinery. Thus if a company was considering a bank loan of say Rs. 20000 , this would be referred to as the principal amount to be borrowed.

Accrued amount (A). This term is applied generally to a principal amount after some time has elapsed for which interest has been calculated and added. It is quite common to qualify a precisely according to time elapsed. Thus $\mathrm{A}^{1}, \mathrm{~A}^{2}$, etc would mean the amount accrued at the end of the first and second years and so on. The company referred to in (a) above might owe, say, an accrued amount of Rs. 22000 at the end of the first year and Rs. 24200 at the end of the second year (if no repayments had been made prior to this time).

Rate of interest (i). Interest is the name given to a proportionate amount of money which is added to some principal amount (invested or borrowed). It is normally denoted by symbol i and expressed as a percentage rate per annum. For example if Rs. 100 is invested at interest rate 5% per annum (pa), it will accrue to Rs. $100+(5 \%$ of Rs. 100$)=$ Rs $100+$ Rs. $5=$ Rs. 105 at the end of one year. Note however, that for calculation purposes, a percentage rate is best written as a proportion. Thus, an interest rate of 10% would be written as $i=0.1$ and 12.5% as $i=0.125$ and so on.

Number of time periods (\mathbf{n}). The number of time periods over which amounts of money are being invested or borrowed is normally denoted by the symbol n. although n is usually a number of years, it could represent other time periods, such as a number of quarters or months.

Simple interest

It is the interest calculated on principal amount at the fixed rate.

$$
\begin{aligned}
& \text { Simple Interest }=\frac{P \boldsymbol{n r}}{\mathbf{1 0 0}} \\
& \text { Where } \mathrm{P}=\text { Principal amount }, \quad \mathrm{n}=\text { number of year, } \\
& \qquad \mathrm{r}=\text { rate of interest per annum } \\
& \text { Amount at the end of } \mathbf{n}^{\text {th }} \text { year }=\quad \mathbf{P}+\frac{\mathbf{P n r}}{\mathbf{1 0 0}} \text { or } \\
& \mathbf{P}\left(\mathbf{1}+\frac{\boldsymbol{n r}}{\mathbf{1 0 0}}\right) \\
& \text { or principal amount + interest }
\end{aligned}
$$

1) What is the simple interest for Rs. 10, 000 at the rate of 15% per annum for 2 years?

$$
\text { Ans: } \quad \begin{aligned}
\mathrm{P}=10,000, \mathrm{n} & =2 \text { years, } \quad \mathrm{r}=15 \\
\text { Interest } & =\frac{P n r}{100}=\frac{10,000 \times 2 \times 15}{100} \\
& =\text { Rs. } 3,000
\end{aligned}
$$

2) Find the total interest and amount of the end of $5^{\text {th }}$ year for as 10,000 at 10\% per annum, simple interest.

Ans: $\quad \mathrm{P}=10,000, \mathrm{n}=5$ years, $\quad \mathrm{r}=10 \%$

$$
\begin{aligned}
\text { Interest } & =\frac{P n r}{100}=\frac{10,000 \times 5 \times 10}{100} \\
& =\underline{\text { Rs. } 5,000}
\end{aligned}
$$

Amount at the end

$$
\begin{aligned}
& 5^{\text {th }} \text { year }=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
& =10,000\left(1+\frac{5 \times 10}{100}\right) \\
& =10,000\left(1+\frac{50}{100}\right) \\
& =10,000\left(\frac{150}{100}\right) \\
& =10,000 \times 1.5 \quad=15,000
\end{aligned}
$$

3) Find the simple interest and amount for Rs. 25,000 at 10% p. a for 26 weeks.

$$
\begin{aligned}
& \text { Ans: } \begin{aligned}
& \mathrm{P}=25,000 \quad \mathrm{n}=26 / 52, \quad \mathrm{r}=10 \% \\
& \text { Interest }=\frac{P n r}{100}=\frac{25,000 \times \frac{26}{52} \times 10}{100} \\
&= \frac{25,000 \times 1 / 2 \times 10}{100} \\
&=\frac{25,000 \times 5}{100}=1250 \\
& \text { Amount at the end }=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
&=25000\left(1+\frac{\frac{26}{52} \times 10}{100}\right) \\
&=25000\left(1+\frac{5}{100}\right) \\
&=25000\left(\frac{105}{100}\right) \\
&=25000 \times 1.05=\underline{\underline{26250}}
\end{aligned}
\end{aligned}
$$

4) Find the simple interest and amount for Rs. 50,000 at 7.5\% p. a for 4 months.

Ans:

$$
\mathrm{P}=50,000, \quad \mathrm{n}=4 / 12, \quad \mathrm{r}=7.5 \%
$$

$$
\text { Simple Interest }=\frac{50,000 \times \frac{4}{12} \times 7.5}{100}
$$

$$
=\frac{50,000 \times 1 / 3 \times 7.5}{100}
$$

$$
=\frac{50,000 \times 2.5}{100}=\underline{\underline{1250}}
$$

$$
\text { Amount } \quad=5000\left(1+\frac{\frac{4}{12} \times 7.5}{100}\right)
$$

$$
=5000\left(1+\frac{2.5}{100}\right)
$$

$$
=5000\left(\frac{102.5}{100}\right)
$$

$$
=5000 \times 1.025=\underline{\underline{51250}}
$$

5) Find the number of years in which a sum of money will double itself at 25% p. a, simple interest.

$$
\begin{aligned}
& \text { Ans: } \mathrm{P}=\mathrm{p}, \text { Amount }=2 \mathrm{P}, \quad \mathrm{r}=25, \quad \mathrm{n}=? \\
& \text { Amount } \quad=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
& 2 \mathrm{P}=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
& \text { i.e., } 2=\left(1+\frac{n r}{100}\right) \\
& =2-1=\frac{n r}{100} \\
& =1=\frac{n r}{100} \\
& \mathrm{nr}=100 \quad \therefore \mathrm{n}=4 \\
& \mathrm{r}=25, \quad
\end{aligned}
$$

number of years $=4$
6) At what rate would a sum of money double in 20 years ?

$$
\text { Ans: } \begin{aligned}
& \mathrm{P}=\mathrm{p}, \mathrm{~A}=2 \mathrm{p}, \mathrm{n}=20, \mathrm{r}=? \\
& \text { Amount }=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
& 2 \mathrm{P}=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
& \text { i.e., } 2=1+\frac{n r}{100} \\
&=2-1=\frac{n r}{100} \\
&=1=\frac{n r}{100} \\
&=\mathrm{nr}=100 \\
& \mathrm{n}=20, \text { then } \mathrm{r}=5
\end{aligned}
$$

\therefore Rate of interest $=5 \%$ per annum.
7) Find the number of years an amount of Rs. 8000 will take to become Rs. 12000 at 6% p. a. Simple interest.

$$
\begin{array}{r}
\text { Ans: } \quad \mathrm{P}=8000, \quad \mathrm{~A}=12000, \quad \mathrm{r}=6, \quad \mathrm{n}=? \\
\text { Total interest } 12000-8000=2000
\end{array}
$$

$$
\begin{aligned}
& \text { Interest }=\frac{P n r}{100} \\
& 4000=\frac{8000 \times \mathrm{n} \times 6}{100} \\
& 4000 \times 100=8000 \times 6 \times \mathrm{n} \\
& 400000=48000 \mathrm{n} \\
& 48000 \mathrm{n}=4,00,000 \\
& \mathrm{n}=\frac{400000}{48000}=\underline{\underline{8.33} \text { years }}
\end{aligned}
$$

8) Find the rate of interest at which an amount of Rs. 12000 will become Rs. 15000 at the end of $10^{\text {th }}$ year.

$$
\begin{gathered}
\text { Ans: } \mathrm{A}=15000, \quad \mathrm{P}=12000, \quad \mathrm{n}=1, \quad \mathrm{r}=? \\
\text { Total interest } 15000-12000=3000 \\
\text { Interest }=\frac{P n r}{100} \\
3000=\frac{12000 \times 10 \times \mathrm{r}}{100} \\
3000 \times 100=12000 \times 10 \times \mathrm{r} \\
300000=120000 \mathrm{r} \\
\mathrm{r}=\frac{300000}{120000}=2.5 \\
\text { Rate of interest }=\underline{\underline{2.5 \%}}
\end{gathered}
$$

9) A certain sum amounts to Rs. 678 in 2 years and to Rs. 736.50 in 3-5 years find the rate of interest and principal amount.

Ans: Amount for 2 years $=678$

$$
\begin{array}{r}
\text { " } \begin{array}{r}
3-5 \text { years }=736.50 \\
\text { Amount }=\mathrm{P}\left(1+\frac{n r}{100}\right) \\
678=\mathrm{P}\left(1+\frac{2 r}{100}\right) \\
736.50=\mathrm{P}\left(1+\frac{3.5 r}{100}\right)
\end{array},-\cdots
\end{array}
$$

Divide (1) by (2)

$$
\begin{aligned}
& =\frac{678}{736.50}=\frac{1+\frac{2 r}{100}}{1+\frac{3.5 r}{100}} \\
& =\frac{678}{736.50}=\frac{100+2 \mathrm{r}}{100+3.5 \mathrm{r}} \\
& =678(100+3.5 \mathrm{r})=736.50(100+2 \mathrm{r}) \\
& =67800+2373 \mathrm{r}=73650+1473 \mathrm{r} \\
& =2373 \mathrm{r}-1473 \mathrm{r}=73650-67800 \\
& =900 \mathrm{r}=5850 \\
& =\mathrm{r}=5850 / 900=6.5
\end{aligned}
$$

Substituting the value of r

$$
\begin{aligned}
& \mathrm{P}\left(1+\frac{2 r}{100}\right)=678 \\
& \mathrm{P}\left(1+\frac{2 \times 6.5}{100}\right)=678 \\
& \mathrm{P}\left(1+\frac{13}{100}\right)=678 \\
& \mathrm{P}\left(\frac{113}{100}\right)=678 \\
& \mathrm{P}(1.13)=678 \\
& \mathrm{P}=678 / 1.13=600
\end{aligned}
$$

Rate of interest $=6.5 \%$
Principal amount at the begining $=600$
10) A person lends Rs. 1500, a part of it at 5\% p.a. and the other part at 9\% p.a. If he receives a total amount of interest of Rs. 162 at the end of 2 years. Find the amount lent at different rate of interest.

Ans: Let x is the Principal of $1^{\text {st }}$ part
Then principal of $2^{\text {nd }}$ part $=1500-\mathrm{x}$
Total interest $=162$
Interest $=\frac{P n r}{100}$
Total interest $=$ interest of $1^{\text {st }}$ part and interest of $2^{\text {nd }}$ part

$$
\begin{aligned}
& 162=\frac{\mathrm{x} \times 2 \times 5}{100}+\frac{(1500-\mathrm{X}) \times 2 \times 9}{100} \\
& =\frac{10 \mathrm{x}}{100}+\frac{(1500-\mathrm{x}) \times 18}{100}=162 \\
& =\frac{10 \mathrm{x}+(27000-18 \mathrm{x})}{100}=162 \\
& 10 \mathrm{x}+(27000-18 \mathrm{x})=162 \times 100 \\
& 10 \mathrm{x}-18 \mathrm{x}=16200-27000 \\
& -8 \mathrm{x}=-10800 \\
& 8 \mathrm{x}=10800 \\
& x=10800 / 8=1350
\end{aligned}
$$

Principal amount of $1^{\text {st }}$ part $=1350$
Principal amount of $2^{\text {nd }}$ part $=150$

Compound Interest

Compound interest means interest calculated on principal amount plus interest. Let ' p ' be the principal ' r ' be the rate of interest (compound) p.a., ' n ' be the number of years then

Amount $=P\left(1+\frac{r}{100}\right)^{n}$
Total interest $=\mathrm{A}-\mathrm{P}$

1) Find CI on Rs. 25200 for 2 years at 10% p.a compounded annually?

Ans: $\quad \mathrm{P}=25200, \quad \mathrm{r}=10, \mathrm{n}=2$

$$
\begin{aligned}
& A=P\left(1+\frac{r}{100}\right)^{n} \\
& =25200\left(1+\frac{10}{100}\right)^{2} \\
& =25200\left(\frac{110}{100}\right)^{2} \\
& =25200 \times(1.10)^{2} \\
& =25200 \times 1.21=30492 \\
& C 1=30492-25200 \\
& \quad=5292 \\
& \quad======
\end{aligned}
$$

2) Find the Compound Interest Rs. $10,000 /$ - for $21 / 2$ years at 10% p.a..
Ans: $P=10,000$

$$
\mathrm{n}=21 / 2 \quad \mathrm{r}=10
$$

$$
\begin{aligned}
\text { Amount for } 2 \text { years } & =\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
& =10,000\left(1+\frac{10}{100}\right)^{2} \\
& =10,000\left(\frac{110}{100}\right)^{2} \\
& =10,000 \times(1.1)^{2} \\
& =10,000 \times 1.21 \\
& =12,100 /-
\end{aligned}
$$

Interest for 2 years $=2100$

$$
\begin{aligned}
\text { Interest for } 6 \text { months } & =12100 \times \frac{10}{100} \times \frac{6}{12} \\
& =605
\end{aligned}
$$

Total interest for $21 / 2$ years $=2100+605$

$$
\begin{aligned}
& =2,705 /- \\
& =======
\end{aligned}
$$

3) X borrowed Rs. 26,400 /- from a bank to buy a scooter at the rate of 15% p.a. compounded yearly. What amount will be pay at the end of 2 years and 4 months to clear the loan.

Ans:

$$
\begin{aligned}
& \mathrm{p}=26,400 /-\quad \mathrm{r}=15 \\
& \mathrm{n}=2 \text { years } 4 \text { months }\left(2 \frac{1}{3} \text { years }\right) \\
& \text { Amount at the end of } 2 \text { years } \quad=\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
& \\
& =26400\left(1+\frac{15}{100}\right)^{2} \\
& \\
& =26400\left(\frac{115}{100}\right)^{2} \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
\text { Interest for } 4 \text { months } \quad & =34914 \times \frac{15}{100} \times \frac{4}{12} \\
& =1745.7
\end{aligned}
$$

Total amount at the end of 2 years and 4 months

$$
\begin{aligned}
\text { ie } 34914+1745.7 & =36659.7 \\
& ==========
\end{aligned}
$$

4) Mr. A borrowed Rs.20,000/- from a person, but he could not repay any amount in a period of 4 years. So the lender demanded as 26500 which is the rate of interest charged.

Ans: Here interest charged on compound

$$
\begin{aligned}
& \mathrm{P}=20,000 \quad \mathrm{n}=4 \quad \mathrm{~A}=26500 \\
& \mathrm{~A}=\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
& 26500=20000\left(1+\frac{r}{100}\right)^{4} \\
& \frac{26500}{20000}=\left(1+\frac{r}{100}\right)^{4} \\
& 1.325=\left(1+\frac{r}{100}\right)^{4} \\
& \log 1.325=4 \log \left(1+\frac{r}{100}\right) \\
& 0.1222=4 \log \left(1+\frac{r}{100}\right) \\
& \log \left(1+\frac{r}{100}\right)=\frac{0.1222}{4} \\
& \log \left(1+\frac{r}{100}\right)=0.03055
\end{aligned}
$$

Antilog $0.03055=1.073$

$$
\begin{aligned}
& \left(1+\frac{r}{100}\right)=1.073 \\
& \frac{r}{100}=1.073-1 \\
& \frac{r}{100}=0.073 \\
& r=100 \times 0.073=7.3 \% \\
& ======
\end{aligned}
$$

5) The population of a country increases every year by 2.4% of the population at the beginning of first year. In what time will be population double itself? Answer to the nearest year?
Ans: $\mathrm{p}=\mathrm{p} \quad \mathrm{A}=2 \mathrm{pr}=2.4 \quad \mathrm{n}=$?

$$
\begin{aligned}
\mathrm{A} & =\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
2 \mathrm{p} & =\mathrm{p}\left(1+\frac{2.4}{100}\right)^{\mathrm{n}} \\
2 \mathrm{p} & =\mathrm{p}\left(\frac{102.4}{100}\right)^{\mathrm{n}} \\
2 \mathrm{p} & =\mathrm{p}(1.024)^{\mathrm{n}} \\
\mathrm{p} & =(1.024)^{\mathrm{n}} \\
\log 2 & =\mathrm{n} \log 1.024 \\
0.3010 & =\mathrm{n} \times 0.0103 \\
\mathrm{n} & =\frac{0.3010}{0.0103}=29.22=30
\end{aligned}
$$

6) The population of a city increases every year by 1.8% of the population at the beginning of that year, in how many years will the total increase of population be 30% ?

Ans: $\mathrm{p}=\mathrm{p} \quad \mathrm{A}=1.3 \mathrm{p} \quad \mathrm{r}=1.8 \quad \mathrm{n}=$?

$$
\begin{gathered}
\mathrm{A}=\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
1.3 \mathrm{p}=\mathrm{p}\left(1+\frac{1.8}{100}\right)^{\mathrm{n}} \\
1.3 \mathrm{p}=\mathrm{p}\left(\frac{101.8}{100}\right)^{\mathrm{n}} \\
1.3 \mathrm{p}=\mathrm{p}(1.018)^{\mathrm{n}} \\
1.3=(1.018)^{\mathrm{n}} \\
\log 1.3=\mathrm{n} \log 1.018 \\
\begin{aligned}
& 0.1139=\mathrm{n} \times 0.0076 \\
& \mathrm{n}= \frac{0.1139}{0.0076}=14.987 \\
&==15 \\
&====
\end{aligned}
\end{gathered}
$$

7) In a certain population, the annual birth and death rates per thousand are 39.4 and 19.4 respectively. Find the number of years in which population will be doubled assuming that there is no emigration or immigration?

Ans: $\mathrm{p}=\mathrm{p} \quad \mathrm{A}=2 \mathrm{p}$

$$
\begin{aligned}
\mathrm{r} & =\frac{39.4-19.4}{1000} \mathrm{x} 100=2 \% \\
\mathrm{r} & =2 \quad \mathrm{n}=? \\
\mathrm{~A} & =\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
2 \mathrm{p} & =\mathrm{p}\left(1+\frac{2}{100}\right)^{\mathrm{n}} \\
2 & =\left(1+\frac{2}{100}\right)^{\mathrm{n}} \\
2 & =p(1.02)^{\mathrm{n}} \\
\log 2 & =\mathrm{n} \log 1.02 \\
0.3010 & =\mathrm{n} \times 0.0086 \\
\mathrm{n} & =\frac{0.3010}{0.0086}=35 \text { years }
\end{aligned}
$$

COMPOUNDING HALF YEARLY OR QUARTERLY

- When interest is compounded half yearly, then $\mathrm{r}=r / 2, \mathrm{n}=2 \mathrm{n}$.
- When interest is compounded quarterly, then $\mathrm{r}=r / 4, \mathrm{n}=4 \mathrm{n}$.
- When interest is compounded monthly, then $\mathrm{r}=r / 12, \mathrm{n}=12 \mathrm{n}$.

1) Find the compound interest on Rs. $50,000 /$ - for $2 \frac{1}{2}$ years at 6% p.a. interest being compounded half yearly.

Ans:

$$
\begin{aligned}
& \mathrm{p}=50,000 \quad \mathrm{n}=21 / 2 \times 2=5 \\
& \mathrm{r}=6 / 2=3
\end{aligned} \quad \begin{aligned}
\text { Amount } & =50,000\left(1+\frac{3}{100}\right)^{5} \\
& =50,000\left(\frac{103}{100}\right)^{5} \\
& =50,000(1.03)^{5}=57964 \\
\mathrm{C} 1 & =7964 \\
& ========
\end{aligned}
$$

Basic Numerical Skills

2) Find the compound interest on Rs.60,000/- for 4 years, if interest is payable half yearly for due first 3 years at the rate of 8% p.a. and for the fourth year, the interest is being payable quarterly at the rate of 6% p.a.

Ans: Amount at in end of 3 years

$$
\begin{aligned}
\mathrm{n}=3 \times 2 & =6, \quad \mathrm{r}=\frac{8}{2}=4 \\
\mathrm{p} & =6,000 \\
& =6,000\left(1+\frac{4}{100}\right)^{6} \\
= & 6,000\left(\frac{104}{100}\right)^{6} \\
& =6,000(1.04)^{6} \\
& =6,000 \times 1.2653 \\
& =7592 \\
= & =======
\end{aligned}
$$

For last year

$$
\mathrm{n}=1 \times 4=4, \quad \mathrm{r}=\frac{6}{2}=1.5, \quad \mathrm{p}=7,592
$$

Amount at the end of $4^{\text {th }}$ year

$$
\begin{aligned}
&= 7592\left(1+\frac{1.5}{100}\right)^{4} \\
&= 7592(1.015)^{4} \\
&= 7592 \times 1.0613=8057 \\
& \text { Interest }=8057-6000= \\
&========
\end{aligned}
$$

3) Find the effective rate of interest if interest is calculated at 10\% p.a. half yearly?

Ans: Let $\mathrm{p}=100, \mathrm{n}=1 \times 2=2, \quad \mathrm{r}=\frac{10}{2}=5$

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{A}=\mathrm{p}\left(1+\frac{r}{100}\right)^{\mathrm{n}} \\
= \\
=100\left(1+\frac{5}{100}\right)^{2} \\
=100\left(\frac{105}{100}\right)^{2} \\
=100 \times 1.1025=110.25 \\
\mathrm{C} 1
\end{array}\right]=110.25-100=10.25
\end{aligned}
$$

