Measures of skewness

Skewness means lack of symmetry when a frequency distribution is not symmetrical, it is said t be asymmetrical or skewed. In the case of a skewed distribution, the mean, median and mode are not equal. Similarly for a skewed distribution Q_{1} and Q_{3} will not be equidistant from median. It is an asymmetrical distribution. It has a long tail on one side and a start tail on the other side.

A distribution is said to be skewed when:
(1) Mean, media and mode are not equal.
(2) Q_{1} and Q_{3} are not equidistant from median.
(3) Frequencies on either side of mode are not equal.
(4) The frequency curve has longer tail on the left side or on the right side.

Positive and Negative skewness

Skewnwss may be either positive or negative. Skewness is said to be positive when the mean is greater than the median and median is greater than mode. More than half area falls to right side of the highest ordinate.

Swewness is said to be negative when the mean is less than median and the median is less than mode. In this case curve is skewed to the left more than half the area falls to the left of the highest ordinate.

Measures of skewness

1) Karl Pearson's measure of skewness

$$
\text { Skewness }=\frac{\text { Mean }- \text { Median }}{\sigma}
$$

2) Bowley's measure of skewness

$$
\text { Skewness }=\frac{Q_{3}+Q_{1}-2 M e d i a n}{Q_{3}-Q_{1}}
$$

3) Kelley's measure of skewness

$$
\text { Skewness }=\frac{P_{90}+P_{10}-2 \text { Median }}{P_{90}-P_{10}}
$$

4) Measure of skewness Based on Moments

$$
\text { Skewness }=\frac{M_{3}}{\sqrt{M_{2}{ }^{3}}}
$$

Kurtosis

Kurtosis is a measure of peakdness. It refers a distribution which is relatively fetker than the normal curve.

When a frequency curve is more peaked than the normal curve, it is called lepto kurtic and when it is more flat topped than the normal curve it is called platy kurtic. When a curve is neither peaked nor plat topped, it is called meso kurtic normal.

Lorenz Curve

Lorenz curve is a graphical method of studying dispersion. It is used in business to study the disparities of the distribution of wages, sales, production etc. In Economics it is useful to measure inequalities in the distribution of income.

It is a graph down to a frequency distribution. While drawing the graph, cumulative percentage values of frequencies on X axis and cumulative percentage values of the variable on Y axis.

Index Numbers

Index numbers is a statistical device for measuring the changes in group of related variables over a period of time.

Uses or Importance of index numbers.

1. Index numbers measure trend values.
2. Index numbers facilitate for policy decisions.
3. Index numbers help in comparing the standard of living.
4. It measures changes in price level.
5. Index numbers are economic barometers. The condition of the economy of a country to be known through construction of index numbers for different periods with regard to employment, literacy, agriculture industry, economics etc. Hence it can be termed as economic barometers.

Limitations

1. Index numbers are only approximate indicator.
2. All index numbers are not good for all purposes.
3. Index numbers are liable to be unissued.
4. Index numbers are specilised average and limitations of average also applicable to index numbers.

Problems or Difficulties in the construction of index numbers

1. Purpose of the index.
2. Selection of the lease period.
3. Selection of items.
4. Selection of an average
5. Selection of weights
6. Selection of appropriate source of data
7. Selection of suitable formula.

Methods of constructing index numbers

1. Unweighted index numbers.
2. Weighted index numbers.

Unweighted or Simple index numbers

Simple index numbers are those index numbers in which all items are treated as equally. Simple aggregate and simple average price relatives are the unweighted index numbers.
(1) Simple Aggregate method
$\mathrm{P}_{01}=\frac{\sum P_{1}}{\sum P_{0}} \times 100$
$\mathrm{P}_{01}=$ index number
$\mathrm{P}_{1}=$ Price for the current year
$P_{1}=$ Price for the base year.
(2) Simple Average Price Relative Method

$$
\begin{aligned}
& \text { Price index }=\frac{\sum I}{n} \\
& \mathrm{I}=\frac{P_{1}}{P_{0}} \times 100, \text { each items can be calculated. }
\end{aligned}
$$

Weighted index numbers

In this method quantity consumed is also taken into account.
Such index are

1. Weighted aggregate method
2. Weighted Average of price relatives

Weighted aggregate method

This method is based on the weight of the prices of the selected commodities.
Following are the commonly used methods:

1. Laspeyre's Method
2. Paasche's Method
3. Bowley-Dorbish Method
4. Fishers ideal method
5. Kelly's Methods

Laspeyre's Method

$\mathrm{P}_{01}=\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times 100$
$\mathrm{p}_{1}=$ Price of the current year
$\mathrm{q}_{0}=$ Quantity of the base year

$$
\mathrm{p}_{0}=\text { Price of the base year }
$$

Paasche's Method

$$
\begin{aligned}
& \mathrm{P}_{01}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100 \\
& \mathrm{q}_{1}=\text { Quantity of the current year }
\end{aligned}
$$

Fishers Ideal Method

$$
\begin{aligned}
& \mathrm{P}_{01}=\sqrt{L \times P} \times 100 \\
& \mathrm{~L}=\text { Laspeyres method } \\
& \mathrm{P}=\text { Paasche's Method } \\
& \mathrm{P}_{01}=\sqrt{\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times \frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}}} \times 100
\end{aligned}
$$

Bowley-Doribish Method

$$
\mathrm{P}_{01}=\frac{L+P}{2}
$$

Kelly's Method

$$
\begin{array}{r}
\mathrm{P}_{01}=\frac{\sum p_{1} q}{\sum p_{0} q} \times 100 \\
\mathrm{q}=\frac{q_{0}+q_{1}}{2}
\end{array}
$$

Weighted Average Price Relative Method

Index number $=\frac{\sum \mathrm{IV}}{\sum \mathrm{V}}$

$$
\begin{aligned}
& \mathrm{V}=\text { Weight } \\
& \mathrm{I}=\frac{P_{1}}{P_{0}} \times 100
\end{aligned}
$$

1. Construct index numbers for 2012 on the basis of the price of 2010

Commodities	Price in 2010	Price in 2012
A	115	130
B	72	89
C	54	75
D	60	72
E	80	105

Answer

$$
\begin{array}{ccc}
\text { Commodities } & P_{0} & P_{1} \\
\text { A } & 115 & 130 \\
\text { B } & 72 & 89 \\
\text { C } & 54 & 75 \\
\text { D } & 60 & 72 \\
\text { E } & \frac{80}{\mathbf{3 8 1}} & \frac{105}{\mathbf{4 7 1}} \\
& === & === \\
P_{01}=\frac{\Sigma P_{1}}{\sum P_{0}} \times 100 & & \\
=\frac{471}{381} \times 100=123.62 \\
=====
\end{array}
$$

2. Calculate simple index number by average relative method.

Items	Price of the base year	Price of the current year
A	5	7
B	10	12
C	15	25
D	20	18
E	8	9

Ans:

Items	P_{0}	P_{1}	(ie $\left.\frac{P_{1}}{P_{0}} \times 100\right)$
A	5	7	140
B	10	12	120
C	15	25	166.7
D	20	18	90
E	8	9	$\frac{112.5}{\mathbf{6 2 9 . 2}}$
			$===$

$$
\begin{aligned}
& \text { Index number }=\frac{\sum I}{n} \\
&=\frac{629.6}{5}=125.84 \\
&=====
\end{aligned}
$$

3. Following are the data related with the prices and quantities consumed for 2010 and 2012.

Commodity	2010		2012	
	Price	Quantity	Price	Quantity
Rice	5	15	7	12
Wheat	4	5	6	4
Sugar	7	4	9	3
Tea	52	2	55	2

Construct price index numbers by
(1) Laspeyre's method
(2) Paasche's method
(3) Bowly's - Dorbish method
(4) Fisher's method

Answer

Commodity	$\mathbf{p}_{\mathbf{0}}$	$\mathbf{q}_{\mathbf{0}}$	$\mathbf{p}_{\boldsymbol{1}}$	$\mathbf{q}_{\boldsymbol{1}}$	$\mathbf{p}_{\mathbf{1}} \mathbf{q}_{\mathbf{0}}$	$\mathbf{p}_{\mathbf{0}} \mathbf{q}_{\mathbf{0}}$	$\mathbf{p}_{\mathbf{1}} \mathbf{q}_{\boldsymbol{1}}$	$\mathbf{p}_{\mathbf{0}} \mathbf{q}_{\mathbf{1}}$
Rice	5	15	7	12	105	75	84	60
Wheat	4	5	6	4	30	20	24	16
Sugar	7	4	9	3	36	28	27	21
Tea	12	2	55	2	110	104	110	104
					$\mathbf{2 8 1}$	$\mathbf{2 2 7}$	$\mathbf{2 4 5}$	$\mathbf{2 0 1}$

(1) Laspeyre's Method

$$
\begin{aligned}
\mathrm{p}_{01}=\frac{\sum \mathrm{P}_{1} \mathrm{q}_{0}}{\sum \mathrm{P}_{0} \mathrm{q}_{0}} \times 100 & =\frac{281}{227} \times 100 \\
& =\underline{123.79}
\end{aligned}
$$

(2) Paascne's method

$$
\begin{aligned}
\mathrm{p}_{01}=\frac{\sum \mathrm{P}_{1} \mathrm{q}_{1}}{\sum \mathrm{P}_{0} \mathrm{q}_{1}} \times 100 & =\frac{245}{201} \times 100 \\
& =\underline{121.89}
\end{aligned}
$$

(3) Bowley - Dorbish Method

$$
\begin{aligned}
\mathrm{p}_{01}=\frac{\mathrm{L}+\mathrm{P}}{2} & =\frac{123.79+121.89}{2} \\
& =122.84
\end{aligned}
$$

(4) Fisher's Method
$\mathrm{p}_{01}=\sqrt{\mathrm{LXP}}$
$=\sqrt{123.79 \times 121.89}=122.84$
4) Calculate index number of price for 2012 on the basis of 2010 , from the data given below:

Commodities	Weight	Price 2010	Price $\mathbf{2 0 1 2}$
A	40	16	20
B	25	40	60
C	5	2	2
D	20	5	6
E	10	2	1

Answers

Price Index Number $=\frac{\sum \mathrm{IV}}{\sum \mathrm{V}}$

Commodities	\mathbf{V}	$\mathbf{p}_{\mathbf{0}}$	$\mathbf{p}_{\mathbf{1}}$	i.e. $\frac{\mathbf{p}_{\mathbf{1}}}{\mathbf{p}_{\mathbf{0}}} \mathbf{x ~ 1 0 0}$	IV
A	40	16	20	125	5000
B	25	40	60	150	3750
C	5	2	2	100	500
D	20	5	6	120	2400
E	10	2	1	50	500
	$\mathbf{1 0 0}$				$\mathbf{1 2 1 5 0}$

Index Number $=\frac{12150}{100}=\underline{121.5}$
5) Construct Price Index

Commodities	Index	Weight
A	350	5
B	200	2
C	240	3
D	150	1
E	250	2

Answers

Commodities	V	I	IV
A	5	350	1750
B	2	200	400
C	3	240	720
D	1	150	150
E	2	250	500
	$\mathbf{1 3}$		$\mathbf{3 5 2 0}$

Index Number $=\frac{\sum \mathrm{IV}}{\sum \mathrm{V}}=\frac{3520}{13}=\underline{\underline{270.77}}$

Consumer Price index number of cost of Living index number or Retail Price index number

Consumer Price index number is also known as copy of Living Index number or Retails Price index number. It is the ration of the monetary expenditures of an individual which secure him the standard of living or total utility in two situations differing only in respect of prices. It represents the average change in prices over a period of time, paid by the consumer for goods and services.

Steps in the construction of Consumer Price Index

1. Determination of the class people for whom the index number is to constructed.
2. Selection of Basic period
3. Conducting family budget enquiry
4. Obtaining price quotation
5. Selecting proper weights
6. Selection of suitable methods for constructing index.

Methods of Constructing Consumer Price Index Number

(1) Aggregate Expenditure Method

Cost of living Index number $==\frac{\sum \mathrm{P}_{1} \mathrm{q}_{0}}{\sum \mathrm{P}_{0} \mathrm{q}_{0}} \times 100$
(2) Family Budget Method or Average Relative Method

Cost of Living Index $=\frac{\sum \mathrm{IV}}{\sum \mathrm{V}}$

1) Find cost of Living index

	Food	Rent	Clothes	Fuel	Miscellaniou
Expenses on	35%	15%	20%	10%	25%
Price 2010	150	30	75	25	40
Price 2012	145	30	65	23	45

What changes the cost of living of 2012 as compare to 2010 ?

Answer

Expenses	\mathbf{V}	$\mathbf{p}_{\boldsymbol{0}}$	$\mathbf{p}_{\boldsymbol{1}}$	\mathbf{I}	IV
Food	35	150	145	96.67	3383.45
Rent	15	30	30	100	1500
Cloth	20	75	65	86.67	1733
Fuel	10	25	23	92	920
Misc.	20	40	45	112.50	2250
					$\mathbf{9 7 8 6 . 8 5}$

Cost of Living Index $=\frac{\sum \mathrm{IV}}{\sum \mathrm{V}}=\frac{9786.85}{100}=97.87$

Time Series Analysis

Time series is the arrangement of data according to the time of occurrence. It helps to find our the variations to the value of data due to changes in time.

Importance

1. It helps for understanding past behavior
2. It facilitates for forecasting and Planning
3. It facilitates comparison

Components of Time Series

1. Secular trend
2. Seasonal Variations
3. Cyclic Variations
4. Irregular Variations

Secular Trend

Trend may be defined as the changes over a long period of time. The significance of trend is greater when the period of time is very longer.

Following are the important method of measuring trend.

1. Graphic Method
2. Semi Average Method
3. Moving Average Method
4. Method of Least Squares
2) Seasonal Variations:- Seasonal Variations are measured for one calendar year. It is the variations which occur some degree of regularity. For example climate conditions, social customs etc.
3) Cyclical Variations:- Cyclical variations are those variation which occur on account of business cycle. They are Prosperity, Dectine, Depression and Recovery.
4) Irregular fluctuations:- One changes of variable could not be predicted due to irregular movements. Irregular movements are like changes in technology, war, famines, flood etc.

Methods of Measuring Trend

(1)Graphic method:- It is otherwise known as free hand method. This is the simplest method of measuring trend. Under this method original data are plotted on the graph paper. The plotted points should be joined, we get a curve. A straight line should be drawn through the middle area of the curve. Such line will describe tendency of the data.
(2)Semi Average Method:- The whole data are divided in to two parts and average of these are to be calculated. The two averages are to be plotted in the graph. The two points plotted should be joined so as to get a straight line. This line is called the ward live.
(3) Method of Moving average:-- Under this method a series of successive average should be calculated from a series of values moving average may be calculated for 3,4,5,6 or 7 years periods.

The moving average can be calculated as follows:
For example 3 years moving average will be $\frac{a+b+c}{3}, \frac{b+c+d}{3}, \frac{c+d+e}{3}$ and so on.
Five years moving average $=\frac{a+b+c+d+e}{5}, \frac{b+c+d+e+f}{5}$ and so on.

1) Compute 3 yearly moving average from the following data

Years:	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Sales (in 000units)	55	47	59	151	79	36	45	72	83	89	102

Calculation of 3 yearly moving average

Year	Sales (in 000 units)	3 yearly moving total	3 yearly moving average
2002	55	----------	----------
2003	47	----------	----------
2004	59	161	53.67
2005	151	257	85.67
2006	79	289	96.33
2007	36	216	58.67
2008	45	160	63.33
2009	72	153	51
2010	83	200	66.67
2011	89	244	81.33
2012	102	277	91.33

2) Calculate 5 yearly moving average

Years:	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
income (in ' 000^{\prime})	161	127	152	143	144	167	182	179	152	163	159

Answers

Year	$\begin{aligned} & \text { Income (in } \\ & 000) \end{aligned}$	Five yearly moving total	Five yearly moving average
2000	161	----------	---
2001	127	-------	-------
2002	152	727	145.4
2003	143	733	146.6
2004	144	788	157.6
2005	167	815	163
2006	182	824	164.8
2007	179	843	168.6
2008	152	835	167
2009	163	----------	-----------
2010	159	-------	----

Calculation of moving average for every periods

1) Calculate the six year moving average

Years:	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Demand (in tones)	105	120	115	110	100	130	135	160	155	140	145

Answers

Year	Demand	6 years moving total	6 years moving average	Centered 6 years moving total	Centered 6 year moving average
2000	105	-----	-------	-------	-------
2001	120	--	--------	--------	----
2002	115	-------	---------	---------	---------
2003	110	680	113.3	231.6	115.8
2004	100	710	118.3	243.3	121.65
2005	130	750	125	256.67	128.34
2006	135	790	131.67	268.34	134.17
2007	160	820	136.67	280.84	140.42
2008	155	865	144.17		
2009	140				
2010	145				

4) Method of Least Squares

This is a popular method of obtaining trend line. The trend line obtained through this method is called line of best fit.

One trend line is represented as

$$
y=a+b x
$$

The value of \mathbf{a} and \mathbf{b} can be ascertained by solving the following two normal equations.
$\sum y=N a+b \sum x$
$\sum \mathrm{xy}=\mathrm{a} \sum \mathrm{x}+\mathrm{b} \sum \mathrm{x}^{2}$
Where \mathbf{x} represents the time, \mathbf{y} represents the value, \mathbf{a} and \mathbf{b} are constant and \mathbf{N} represent total number.

When the middle year is taken as the origin, then $\sum \mathrm{x}=0$, then normal equation would be
$\sum \mathrm{xy}=\mathrm{Na}$
$\sum \mathrm{xy}=\mathrm{b} \sum \mathrm{x}^{2}$
Hence $\mathrm{a}=\frac{\sum \mathrm{xy}}{\sum \mathrm{x}^{2}}$

1) Following are the data related with the output of a factory for 7 years

Years:	2006	2007	2008	2009	2010	2011	2012
Output (in tones)	47	64	77	88	97	109	113

Calculate the trend values through the method of least squares and also forecast the production 2013 and 2015.

Answers

Year \mathbf{t}	Production \mathbf{y}	\mathbf{x} $\mathbf{t}-\mathbf{2 0 0 9})$	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$
2006	47	-3	-141	9
2007	64	-2	-128	4
2008	77	-1	-77	1
2009	88	0	0	0
2010	97	1	97	1
2011	109	2	218	4
2012	113	$\mathbf{3}$	339	9
	$\mathbf{5 9 5}$	$\mathbf{0}$	$\mathbf{3 0 8}$	$\mathbf{2 8}$

Here $\sum \mathrm{x}=0$
Then $\mathrm{a}=\frac{\sum \mathrm{y}}{n} \quad=\frac{595}{7}=85$

$$
\mathrm{b}=\frac{\sum \mathrm{xy}}{\sum \mathrm{x}^{2}}=\frac{308}{28}=11
$$

$y=a+b x$
$2006-85+11 \times-3=52$
$2007-85+11 \times-2=63$
$2008-85+11 \times-1=74$
$2009-85+11 \times 0=85$
$2010-85+11 \times 1=96$
$2011-85+11 \times 2=107$
$2012-85+11 \times 3=118$

Production in 2013

$$
=85 \times 11 \times 4=\underline{129 \text { tonns }}
$$

Production in 2015

$$
=85 \times 11 \times 6=\underline{151 \text { tonns }}
$$

